不定積分・定積分
#高知工科大学2024#定積分_25#元高校教員
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#高知工科大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{3} x|x-2| dx$
出典:2024年 高知工科大学
この動画を見る
$\displaystyle \int_{-1}^{3} x|x-2| dx$
出典:2024年 高知工科大学
微分法と積分法 数Ⅱ定積分:1/6公式の使い方【烈’s study!がていねいに解説】
単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材:
#TK数学#TK数学問題集2(幾何編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\displaystyle \int_{α}^{ β } (x-α)(x-β)dx=-\dfrac{1}{6}(β-α)^3$を用いて、次の定積分を求めよ。
(1)$\displaystyle \int_{-1}^{ 2 } (x^2-x-2)dx$
(2)$\displaystyle \int_{1-\sqrt{2} }^{1+\sqrt{2}} (x^2-2x-1)dx$
(3)$\displaystyle \int_{3}^{ 4 } (14x-24-2x^2)dx$
この動画を見る
$\displaystyle \int_{α}^{ β } (x-α)(x-β)dx=-\dfrac{1}{6}(β-α)^3$を用いて、次の定積分を求めよ。
(1)$\displaystyle \int_{-1}^{ 2 } (x^2-x-2)dx$
(2)$\displaystyle \int_{1-\sqrt{2} }^{1+\sqrt{2}} (x^2-2x-1)dx$
(3)$\displaystyle \int_{3}^{ 4 } (14x-24-2x^2)dx$
微分法と積分法 数Ⅱ定積分:定積分の計算基本 【烈’s study!がていねいに解説】
単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の定積分を求めよ。
(1)$\displaystyle \int_{-1}^{ 1 } (4x^3+3x^2+3x+1)dx$
(2)$\displaystyle \int_{-2}^{ 2 } (x^3-x^2-x+4)dx$
(3)$\displaystyle \int_{-2}^{ 2 } (x^4-5x^3+x^2+9x)dx$
この動画を見る
次の定積分を求めよ。
(1)$\displaystyle \int_{-1}^{ 1 } (4x^3+3x^2+3x+1)dx$
(2)$\displaystyle \int_{-2}^{ 2 } (x^3-x^2-x+4)dx$
(3)$\displaystyle \int_{-2}^{ 2 } (x^4-5x^3+x^2+9x)dx$
微分法と積分法 数Ⅱ 不定積分:接線からの関数決定 【烈’s study!がていねいに解説】
単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$f'(x)=x²+2x+2$で、曲線$y=f(x)$は$y=-3x+1$に接している。この時、$f(x)$を求めよ
この動画を見る
$f'(x)=x²+2x+2$で、曲線$y=f(x)$は$y=-3x+1$に接している。この時、$f(x)$を求めよ
微分法と積分法 数Ⅱ 不定積分:係数比較から関数の決定 【烈’s study!がていねいに解説】
単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
2次関数$f(x)$の1つの不定積分$F(x)$が$xf(x)-2x³+3x²$に等しく、$f(1)=0$であるとき、$f(x)$を求めよ。
この動画を見る
2次関数$f(x)$の1つの不定積分$F(x)$が$xf(x)-2x³+3x²$に等しく、$f(1)=0$であるとき、$f(x)$を求めよ。
【高校数学】数Ⅱ:微分法と積分法:定積分の計算(同じ積分範囲)【NI・SHI・NOがていねいに解説】
単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の定積分を求めよ。
$\displaystyle \int_{-2}^{3}(2x^2+4x-3)dx-2 \int_{-2}^{3}(x^2+4x+3)dx$
この動画を見る
次の定積分を求めよ。
$\displaystyle \int_{-2}^{3}(2x^2+4x-3)dx-2 \int_{-2}^{3}(x^2+4x+3)dx$
【高校数学】数Ⅱ:微分法と積分法:定積分と面積:1/6公式を用いて曲線で囲まれた図形の面積を求める!【NI・SHI・NOがていねいに解説】
単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#面積、体積#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の曲線または直線で囲まれた図形の面積Sを求めよ。
$y=x^2+3x,y=-x^2-x+6$
この動画を見る
次の曲線または直線で囲まれた図形の面積Sを求めよ。
$y=x^2+3x,y=-x^2-x+6$
大阪大学2023年の積分に見えない積分難問にガチで挑んでみた!#shorts #高校数学 #大阪大学
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
大阪大学2023年の積分に見えない積分難問にガチで挑んでみた!
この動画を見る
大阪大学2023年の積分に見えない積分難問にガチで挑んでみた!
京都大学2024年の積分の問題をその場で解きながら解説してみた! #shorts #高校数学 #京都大学
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
京都大学2024年の積分の問題をその場で解きながら解説してみた!
この動画を見る
京都大学2024年の積分の問題をその場で解きながら解説してみた!
【短時間でポイントチェック!!】絶対値を含む定積分〔現役講師解説、数学〕
単元:
#数Ⅱ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
$\int_1^3{|x^2-4|}dx$
この動画を見る
$\int_1^3{|x^2-4|}dx$
【短時間でポイントチェック!!】定積分 面積③ 曲線と曲線で囲まれた面積〔現役講師解説、数学〕
単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#面積、体積#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
$y=x^2-2,y=-x^2-2x+2$で囲まれた部分の面積は?
この動画を見る
$y=x^2-2,y=-x^2-2x+2$で囲まれた部分の面積は?
【短時間でポイントチェック!!】定積分 面積② 直線と曲線で囲まれた面積〔現役講師解説、数学〕
単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#面積、体積#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
$y=x^2-x-4,y=x-1$で囲まれた部分の面積
この動画を見る
$y=x^2-x-4,y=x-1$で囲まれた部分の面積
【高校数学】毎日積分76日目~47都道府県制覇への道~【⑲大阪】【毎日17時投稿】
単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
■【大阪大学 2023】
$n$を2以上の自然数とする。
(1)$0\leqq x\leqq 1$の時、次の不等式が成り立つことを示せ。
$\dfrac{1}{2}x^n\leqq (-1)^n\left[\dfrac{1}{x+1}-1-\displaystyle \sum_{k=2}^n(-1)^{k-1}\right]\leqq x^n-\dfrac{1}{2}x^{n+1}$
(2)$a_n=\displaystyle \sum_{k=1}^n\dfrac{(-1)^{k-1}}{k}$とするとき、次の極限値を求めよ。
$\lim_{n\to\infty}(-1)^n n(a_n-\log 2)$
この動画を見る
■【大阪大学 2023】
$n$を2以上の自然数とする。
(1)$0\leqq x\leqq 1$の時、次の不等式が成り立つことを示せ。
$\dfrac{1}{2}x^n\leqq (-1)^n\left[\dfrac{1}{x+1}-1-\displaystyle \sum_{k=2}^n(-1)^{k-1}\right]\leqq x^n-\dfrac{1}{2}x^{n+1}$
(2)$a_n=\displaystyle \sum_{k=1}^n\dfrac{(-1)^{k-1}}{k}$とするとき、次の極限値を求めよ。
$\lim_{n\to\infty}(-1)^n n(a_n-\log 2)$
【数学Ⅱ/積分】絶対値を含む定積分
単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の定積分を求めよ
$\displaystyle \int_{0}^{3} |x^2-1|dx$
この動画を見る
次の定積分を求めよ
$\displaystyle \int_{0}^{3} |x^2-1|dx$
【高校数学】毎日積分74日目~47都道府県制覇への道~【九州~四国・中国地方総集編(テーマ別)】【毎日17時投稿】
【短時間でポイントチェック!!】定積分 面積①〔現役講師解説、数学〕
単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#面積、体積#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
$y=x^2-3x$と$x$軸および$x=1,x=4$で囲まれた面積は?
この動画を見る
$y=x^2-3x$と$x$軸および$x=1,x=4$で囲まれた面積は?
【高校数学】毎日積分70日目~国立大学47都道府県制覇への道~【⑭島根】【毎日17時投稿】
単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
■【島根大学 2023】
$a$を実数の定数、$n$を自然数とし、関数$f(x)$を$f(x)=1-ax^n$と定める。次の問いに答えよ。
(1)$\dfrac{n+5}{n+2}\leqq 2$を示せ。
(2)$\displaystyle \int_0^1 xf(x)dx\leqq \dfrac{2}{3}\displaystyle \int_0^1 f(x)dx^2$を示せ。
(3) (2)の不等式において、等号が成立するときの$a$と$n$の値を求めよ。
この動画を見る
■【島根大学 2023】
$a$を実数の定数、$n$を自然数とし、関数$f(x)$を$f(x)=1-ax^n$と定める。次の問いに答えよ。
(1)$\dfrac{n+5}{n+2}\leqq 2$を示せ。
(2)$\displaystyle \int_0^1 xf(x)dx\leqq \dfrac{2}{3}\displaystyle \int_0^1 f(x)dx^2$を示せ。
(3) (2)の不等式において、等号が成立するときの$a$と$n$の値を求めよ。
【高校数学】毎日積分65日目~47都道府県制覇への道~【⑨高知】【毎日17時投稿】
単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
(1)すべての実数xに対して
$\sin 3x=3\sin x-4\sin^3x$
$\cos 3x=-3\cos x+4\cos^3x$
が成り立つことを、加法定理と2倍角の公式を用いて示せ。
(2)実数$\theta$を、$\dfrac{\pi}{3}\lt \theta \lt \dfrac{\pi}{2}$と$\cos 3\theta=-\dfrac{11}{16}$を同時に満たすものとする。このとき、$\cos\theta$を求めよ。
(3)(2)の$\theta$に対して、定積分$\displaystyle \int_{0}^{\theta}sin^5x dx$を求めよ。
【高知大学 2023】
この動画を見る
(1)すべての実数xに対して
$\sin 3x=3\sin x-4\sin^3x$
$\cos 3x=-3\cos x+4\cos^3x$
が成り立つことを、加法定理と2倍角の公式を用いて示せ。
(2)実数$\theta$を、$\dfrac{\pi}{3}\lt \theta \lt \dfrac{\pi}{2}$と$\cos 3\theta=-\dfrac{11}{16}$を同時に満たすものとする。このとき、$\cos\theta$を求めよ。
(3)(2)の$\theta$に対して、定積分$\displaystyle \int_{0}^{\theta}sin^5x dx$を求めよ。
【高知大学 2023】
【短時間でポイントチェック!!】定積分 1/6公式〔現役講師解説、数学〕
単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#面積、体積#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
$\int_{-1}^2\{(x+2)-x^2\}dx$
この動画を見る
$\int_{-1}^2\{(x+2)-x^2\}dx$
故郷長崎の積分でまさかの大苦戦…!? #shorts #高校数学 #毎日積分
毎日積分~47都道府県制覇への道~ #Shorts #高校数学 #積分
【短時間でポイントチェック!!】定積分の基礎〔現役講師解説、数学〕
毎日積分~積分47都道府県制覇への道~ #Shorts #毎日積分 #高校数学
【短時間でポイントチェック!!】不定積分の基礎〔現役講師解説、数学〕
単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
①$\int xdx$
②$\int x^2dx$
③$\int 4x^2dx$
④$\int (x^2+x)dx$
⑤$\int 1dx$
この動画を見る
①$\int xdx$
②$\int x^2dx$
③$\int 4x^2dx$
④$\int (x^2+x)dx$
⑤$\int 1dx$
【積分】積分がなぜ面積を求められるのかについて解説しました!【数学III】
なぜ定積分で面積が求められるのか? #Shorts #毎日積分 #高校数学
【高校数学】毎日積分37日目【難易度:★★★】【毎日17時投稿】
単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\displaystyle \int_0^2 \dfrac{2x+1}{\sqrt{x^2+4}}dx$
これを解け.
この動画を見る
$\displaystyle \int_0^2 \dfrac{2x+1}{\sqrt{x^2+4}}dx$
これを解け.