福田の数学〜計算ミスにはご用心〜慶應義塾大学2023年総合政策学部第2問〜定積分で表された関数 - 質問解決D.B.(データベース)

福田の数学〜計算ミスにはご用心〜慶應義塾大学2023年総合政策学部第2問〜定積分で表された関数

問題文全文(内容文):
実数$t \geq 0$に対して、関数 G(t) を次のように定義する。
$G(t)=\displaystyle \int_{t}^{ t+1 } |3x^2-8x-3|dx$
このとき、
(1)$0 \leqq t \lt \fbox{ア}$のときG(t)=$\fbox{イ}t^2+\fbox{ウ}t+\fbox{エ}$
(2)$\fbox{ア} \leqq t \lt \fbox{オ}$のとき$G(t)=\fbox{カ}t^3+\fbox{キ}t^2+\fbox{ク}t+\fbox{ケ}$
(3)$\fbox{オ} \leqq t$のとき$G(t)=\fbox{コ}t^2+\fbox{サ}t+\fbox{シ}$
である。また、G(t)が最小となるのは、$\dfrac{\fbox{ス}+\sqrt{\fbox{セ}}}{\fbox{ソ}}$のときである。
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
実数$t \geq 0$に対して、関数 G(t) を次のように定義する。
$G(t)=\displaystyle \int_{t}^{ t+1 } |3x^2-8x-3|dx$
このとき、
(1)$0 \leqq t \lt \fbox{ア}$のときG(t)=$\fbox{イ}t^2+\fbox{ウ}t+\fbox{エ}$
(2)$\fbox{ア} \leqq t \lt \fbox{オ}$のとき$G(t)=\fbox{カ}t^3+\fbox{キ}t^2+\fbox{ク}t+\fbox{ケ}$
(3)$\fbox{オ} \leqq t$のとき$G(t)=\fbox{コ}t^2+\fbox{サ}t+\fbox{シ}$
である。また、G(t)が最小となるのは、$\dfrac{\fbox{ス}+\sqrt{\fbox{セ}}}{\fbox{ソ}}$のときである。
投稿日:2023.12.02

<関連動画>

福田の数学〜慶應義塾大学2022年看護医療学部第5問〜定積分で表された関数の最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{5}}\ 関数f(x)をf(x)=(x+1)(|x-1|-1)+2で定める。\\
(1)y=f(x)のグラフをかきなさい。\\
(2)kを実数とする。このとき、方程式f(x)=kが異なる3つの実数解\\
をもつようなkの値の範囲は\boxed{\ \ ア\ \ }である。\\
(3)曲線y=f(x)上の点P(0,f(0))における接線lの方程式はy=\boxed{\ \ イ\ \ }である。\\
また、曲線y=f(x)と直線lは2つの共有点をもつが、点Pとは異なる共有点を\\
Qとするとき、点Qのx座標は\boxed{\ \ ウ\ \ }である。さらに、曲線y=f(x)と直線lで\\
囲まれた図形の面積は\boxed{\ \ エ\ \ }である。\\
(4)関数F(x)をF(x)=\int_0^xf(t)dtで定める。このとき、F'(x)=0を満たすxを\\
すべて求めるとx=\boxed{\ \ オ\ \ }である。これより、関数F(x)は\\
x=\boxed{\ \ カ\ \ }で最小値\ \boxed{\ \ キ\ \ }\ をとることがわかる。\\
\end{eqnarray}
この動画を見る 

【数Ⅱ】微分法と積分法:定積分:積分を含む関数 PRIMEⅡ 531(1)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の等式を満たす関数f(x)を求めよ。

$f(x)=6x-\int_{0}^{3}f(t)dt$

この動画を見る 

【数Ⅱ】三角関数積⇒和の公式笑っちゃう覚え方

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角関数積⇒和の公式笑っちゃう覚え方
この動画を見る 

福田の数学〜慶應義塾大学2022年環境情報学部第3問〜4次関数のグラフの接線と囲まれた面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ xy平面上の曲線Cをy=x^2(x-1)(x+2)とする。
\\(1)Cに2点で下から接する直線Lの方程式は\\
\\
y=\frac{\boxed{\ \ アイウ\ \ }}{\boxed{\ \ エオカ\ \ }}\ x+\frac{\boxed{\ \ キクケ\ \ }}{\boxed{\ \ コサシ\ \ }}\ である。\\
\\
(2)CとLが囲む図の斜線部分の面積(※動画参照)は\\
\\
\frac{\boxed{\ \ スセソ\ \ }\sqrt{\boxed{\ \ タチツ\ \ }}}{\boxed{\ \ テトナ\ \ }}\ となる。\\
\\
ただし、次の公式を使ってもかまわない(m,nは正の整数)\\
\int_{\alpha}^{\beta}(x-\alpha)^m(x-\beta)^ndx=\frac{(-1)^nm!n!}{(m+n+1)!}(\beta-\alpha)^{m+n+1}\\
\end{eqnarray}
この動画を見る 

【数Ⅱ】微分法と積分法:定積分:定積分を利用した方程式 PRIMEⅡ 533(1)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の等式を満たす関数f(x)と定数aの値を求めよ。

$\int_{a}^{x}f(t)dt=2x^2+3x-5$


この動画を見る 
PAGE TOP