大学入試問題#881「模範解答が知りたい!」 #北海道大学フロンティア入試(2024) #数列 - 質問解決D.B.(データベース)

大学入試問題#881「模範解答が知りたい!」 #北海道大学フロンティア入試(2024) #数列

問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
a_1=0 \\
a_{n+1}+a_n=2n^2
\end{array}
\right.
\end{eqnarray}$
で定まる数列$\{a_n\}$の一般項$a_n$を求めよ。

出典:2024年北海道大学
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数B
指導講師: ますただ
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
a_1=0 \\
a_{n+1}+a_n=2n^2
\end{array}
\right.
\end{eqnarray}$
で定まる数列$\{a_n\}$の一般項$a_n$を求めよ。

出典:2024年北海道大学
投稿日:2024.07.21

<関連動画>

福田の数学〜一橋大学2023年文系第5問〜反復試行の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ A, B, Cの3人が、A, B, C, A, B, C, A, ... という順番にさいころを投げ、最初に1を出した人を勝ちとする。だれかが1を出すか、全員が$n$回ずつ投げたら、ゲームを終了する。A, B, Cが勝つ確率$P_A$, $P_B$, $P_C$をそれぞれ求めよ。

2023一橋大学文系過去問
この動画を見る 

【高校数学】 数B-87 漸化式①

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
問題1
次の条件で定められる数列の$a_2,a_5$を求めよう.

①$a_1=3,a_{n+1}=2a_n-1$

②$a_1=1,a_{n+1}=a_n+n$

問題2
次の条件で定められる数列$\{a_n\}$の一般項を求めよう.

③$a_1=2,a_{n+1}=a_{n+3}$

④$a_1=1,a_{n+1}=-3a_n$

⑤$a_1=3,a_{n+1}-a_n=-5$

⑥$a_1=-5,a_{n+1}-2a_n=0$
この動画を見る 

大島さんの自習室 もっちゃん授業を観たら突然復習し始めた

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(k+1)^4-k^4=??$
この動画を見る 

【数B】【数列】自然数の式の証明1 ※問題文は概要欄

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1) 整数$n$を$2$で割った余りで分類することで、$3n^2-n$が$2$の倍数であることを証明せよ。
(2) 整数$n$を$3$で割った余りで分類することで、 $n^3-n+9$が$3$の倍数であることを証明せよ。
この動画を見る 

あれですよ、あれ

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \dfrac{3}{1!+2!+3!}+ \dfrac{4}{2!+3!+4!}+\dfrac{5}{3!+4!+5!}+$
$・・・・・・+\dfrac{2022}{2020!+2021!+2022!}$
これを解け.
この動画を見る 
PAGE TOP