#信州大学 #不定積分 - 質問解決D.B.(データベース)

#信州大学 #不定積分

問題文全文(内容文):
以下の不定積分を解け
$\displaystyle \int e^x(e^x+1)^2 dx$

出典:信州大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師: ますただ
問題文全文(内容文):
以下の不定積分を解け
$\displaystyle \int e^x(e^x+1)^2 dx$

出典:信州大学
投稿日:2024.07.13

<関連動画>

重積分⑧-1【一般の変数変換】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#数学検定・数学甲子園・数学オリンピック等#図形と方程式#円と方程式#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学検定#数学検定1級#数学(高校生)#数Ⅲ#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
楕円面$\frac{x^2}{a^2}+ \frac{y^2}{b^2}+\frac{z^2}{c^2}=1$
で囲まれる立体の体積Vを求めよ $(a,b,c > 0)$
この動画を見る 

#千葉大学2021#不定積分#元高専教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#千葉大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
以下の不定積分を解け。
$\displaystyle \int x log(x^2-1) dx$

出典:2021年千葉大学
この動画を見る 

福田の数学〜早稲田大学2022年商学部第1問(4)〜3次関数のグラフの回転と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(4)3次関数f(x)は、x=1で極大値5をとり、x=2で極小値4をとる。
関数$f(x)(x \geqq 0)$のグラフを、原点を中心に時計回りに
θ回転して得られる図形を$C(θ)$とする。
ただし、$0 \lt θ \lt \pi$とする。$C(θ)$と$x$軸の共有点が相異なる3点であるとき、
それらを$x$座標の小さい順に$P_θ,Q_θ,R_θ$とする。線分$Q_θR_θ$と$C(θ)$で
囲まれた部分の面積が$\frac{81}{32}$であるとき、$Q_θ$の$x$座標は$\boxed{\ \ エ\ \ }$である。

2022早稲田大学商学部過去問
この動画を見る 

南山大 n!0が100個並ぶ

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#南山大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n!$は1の位から連続して100個以上の0が並ぶ。
最小の$n$を求めよ。

出典:南山大学 過去問
この動画を見る 

福田の数学〜名古屋大学2025理系第4問〜コインを裏返す操作の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

コイン$①,\cdots,⑥$が下図のようにマス目の中に

置かれている。

これらのコインから無作為にひとつを選び、

選んだコインはそのままにし、

そのコインのあるマス目と

辺を共有して隣接するマス目のコインを裏返す

操作を考える。

例えば、①を選べば、②,④を裏返し、

②を選べば、①,③,⑤を繰り返す。

最初はすべてのコインが

表向きに置かれていたとする。

正の整数$n$に対し、

$n$回目の操作終了時点ですべてのコインが

裏向きである確率$p_n$とするとき、

以下の問いに答えよ。

(1)$p_2$を求めよ。

(2)コイン$①,\cdots,⑥$をグループ$A,B$に

分けることによって、

$n$回目の操作終了時点ですべてのコインが

裏向きであるための必要十分条件を

次の形に表すことができる。

図は動画内参照

$2025$年名古屋大学理系過去問題
この動画を見る 
PAGE TOP