大学入試問題#860「これ、ええ問題」 #立教大学 #極限 - 質問解決D.B.(データベース)

大学入試問題#860「これ、ええ問題」 #立教大学 #極限

問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{\sin(1-\cos x)}{x^2}$

出典:立教大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{\sin(1-\cos x)}{x^2}$

出典:立教大学 入試問題
投稿日:2024.06.26

<関連動画>

京都大 4次方程式の解の個数 Mathematics Japanese university entrance exam Kyoto University

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x^2+ax+1)(3x^2+ax-3)=0$
この方程式の実数解の個数は?

出典:2008年京都大学 過去問
この動画を見る 

大学入試問題#378「どこまで記述すべきか・・・」 #奈良県立医科大学2015 #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#奈良県立医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{\sin\ x-\sin(\tan\ x)}{x-\tan\ x}$

出典:2015年奈良県立医科大学 入試問題
この動画を見る 

福田の数学〜早稲田大学2025人間科学部第1問(1)〜4次式の因数分解と未定係数法

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(1)整式$x^4-13x^2+18x-5$を整数係数の

範囲で因数分解すると

$(x^2+\boxed{ア} x+\boxed{イ})(x^2+\boxed{ウ}x+\boxed{エ})$

となる。

ただし、$\boxed{ア}\lt \boxed{ウ}$とする。

$2025$年早稲田大学人間科学部過去問題
この動画を見る 

大阪市立大 いい問題

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#大阪市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2021大阪市立大学
単位円に内接する正n角形の面積を$A_n$
単位円に内接する正n角形の各辺の中点を結んでできる正n角形の面積を$B_n$
①②$A_n$,$B_n$をnを用いて
③$\displaystyle\lim_{n \to \infty}B_n$を求めよ
④$n \geqq 32$のとき$\frac{B_n}{A_n}>\frac{99}{100}$を示せ
この動画を見る 

福田の数学〜東京科学大学(旧・東京工業大学)2025理系第3問〜確率漸化式と無限級数の和

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3}$

$0\lt p\lt 1$とする。

表が出る確率が$p$、裏が出る確率が$1-p$である

$1$枚のコインを使って次のゲームを行う。

・ゲームの開始時点で点数は$0$点

・コインを投げ続け、表が出るごとに$1$点加算し、
 裏が出たときは点数はそのまま

・$2$回続けて裏が出たらゲームは終了。

$0$以上の整数$n$に対し、ゲームが終わったときに

$n$点となっている確率を$Q_n$とする。

(1)$Q_1,Q_2$を$p$を用いて表せ。

(2)$Q_2$を$n$と$p$を用いて表せ。

(3)$0\lt x\lt 1$を満たす実数$x$に対して次式が

成り立つことを示せ。

$\dfrac{1}{(1-x)^2}=\displaystyle \sum_{k=0}^{\infty}(n+1)x^n$

必要ならば$0\lt x \lt 1$のとき

$\displaystyle \lim_{n\to\infty} nx^n=0$であることを

証明なしで使ってもよい。

(4)無限級数$\displaystyle \sum_{n=0}^{\infty} nQn$を$p$を用いて表せ。

$2025$年東京科学大学(旧・東京工業大学)
理系過去問題
この動画を見る 
PAGE TOP