大学入試問題#862「一言、よくある良問」 #横浜国立大学 #定積分 - 質問解決D.B.(データベース)

大学入試問題#862「一言、よくある良問」 #横浜国立大学 #定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{2} x^3\sqrt{ 4-x^2 } dx$

出典:横浜国立大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{2} x^3\sqrt{ 4-x^2 } dx$

出典:横浜国立大学
投稿日:2024.06.29

<関連動画>

大学入試問題#269 横浜市立大学医学部(2010) #極限 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#横浜市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ R \to \infty }\displaystyle \int_{1}^{R^2}\displaystyle \frac{e^{-\sqrt{ x }}}{2}dx$

出典:2010年横浜市立大学 医学部 入試問題
この動画を見る 

福田の数学〜東京工業大学2022年理系第4問〜複素数平面上の点の軌跡と線分の通過範囲

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
aを正の実数とする。複素数$z$が$|z-1|=a$かつ$z\neq \frac{1}{2}$を満たしながら
動くとき、複素数平面上の点$w=\frac{z-3}{1-2z}$が描く図形をKとする。
このとき、次の問いに答えよ。
(1)Kが円となるためのaの条件を求めよ。また、そのとき
Kの中心が表す複素数とKの半径を、それぞれaを用いて表せ。
(2)aが(1)の条件を満たしながら動くとき、虚軸に平行で円Kの直径となる
線分が通過する領域を複素数平面上に図示せよ。

2022東京工業大学理系過去問
この動画を見る 

大学入試の因数分解 名古屋経済大

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$x^4-3x^2y^2+y^4$

名古屋経済大学
この動画を見る 

大学入試問題#124 高知大学(2020) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\frac{7}{2}}^{\frac{9}{2}}\displaystyle \frac{2^x}{2^x+\sqrt{ 2 }}\ dx$を計算せよ。

出典:2020年高知大学 入試問題
この動画を見る 

弘前大 3倍角 5倍角 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#三角関数#加法定理とその応用#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$\sin 3x$を$\sin x$で表せ

(2)
$\sin x + \cos x=4\sin x \cos ^2x$を満たす$x$を求めよ


出典:1986年弘前大学 過去問
この動画を見る 
PAGE TOP