大学入試問題#864「基本に忠実に」 #宮崎大学(2013) #定積分 - 質問解決D.B.(データベース)

大学入試問題#864「基本に忠実に」 #宮崎大学(2013) #定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{e^{4x}}{e^{2x}+2} dx$

出典:2013年宮崎大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{e^{4x}}{e^{2x}+2} dx$

出典:2013年宮崎大学 入試問題
投稿日:2024.07.03

<関連動画>

大学入試問題#836「このタイプの問題ばかり探していますw」 #長崎大学(2024) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1} \displaystyle \frac{x^2-x^4}{1+e^x}dx$

出典:2024年長崎大学
この動画を見る 

福田の数学〜東京医科歯科大学2024医学部第1問〜n変数の不定方程式の解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$n$を$2$以上の自然数とする。自然数の組$(a_1,a_2,\cdots,a_n)$を解とする方程式
$(*)~a_1+a_2+\cdots+a_n=a_1 \times a_2 \times \cdots \times a_n$を考える。
(1) $n=3$のとき、$(*)$の解$(a_1,a_2,a_3)$のうち、$a_1\leqq a_2 \leqq a_3$を満たすものをすべて求めよ。
(2) $n\geqq 3$のとき、$(*)$の任意の解$(a_1,a_2,\cdots,a_n)$において、$a_i=1$となる$i$が少なくとも1つ存在することを示せ。
(3) $(*)$のある解$(a_1,a_2,\cdots,a_n)$において、$a_i=1$となる$i$がちょうど2個存在しているとする。このとき、$n$のとりうる値を全て求めよ。
この動画を見る 

福田の数学〜約数の個数から元の数を特定する難問〜慶應義塾大学2023年総合政策学部第1問後編〜約数の個数と素因数分解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
整数nの正の約数の個数をd(n)と書くことにする。たとえば、 10 の正の約数は1 , 2 , 5 , 10 であるから d(10)= 4 である。
( 1 ) 2023 以下の正の整数nの中でd(n)=5となる数は$\fbox{ア}$個ある。
( 2 ) 2023 以下の正の整数nの中でd(n)=15となる数は$\fbox{イ}$個ある。
( 3 ) 2023 以下の正の整数nの中でd(n) が最大となるのは$n=\fbox{ウ}$のときである。

2023慶應義塾大学総合政策学部過去問
この動画を見る 

大学入試問題#762「再生回数は、期待できない」 東京理科大学工学部(2003) #曲線の長さ

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
曲線$y=(2x+1)\sqrt{ 2x+1 }$の区間$0 \leq x \leq \displaystyle \frac{1}{3}$にある部分の長さを求めよ。

出典:2003年東京理科大学工学部 入試問題
この動画を見る 

福田の数学〜慶應義塾大学2021年環境情報学部第5問〜空間の領域に位置する直方体の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{5}}$ $xyz空間$において、$直方体ABCD-EFGH$が$z \geqq x^2+y^2$
$(0 \leqq z \leqq 1)$を満たす立体の周辺および内部に存在する。この
直方体の$面ABCD,EFGH$は$xy平面$に平行であり、$頂点A,B,C,D$
は$平面z=1$上に、$頂点E,F,G,H$は$曲面z=x^2+y^2$上に存在する。

$(1)$$直方体ABCD-EFGH$の$面ABCD$および$EFGH$が$1辺$の$長さa$
の正方形のとき、正の実数である$a$の取り得る値の範囲は
$0 \lt a \lt \sqrt{\boxed{\ \ アイ\ \ }}$であり、この直方体の体積は$\frac{\boxed{\ \ ウエ\ \ }}{\boxed{\ \ オカ\ \ }}a^4+\boxed{\ \ キク\ \ }a^2$
である。
$(2)$$直方体ABCD-EFGH$の$面ABFE$および$DCGH$が$1辺$の$長さb$
の正方形のとき、正の実数である$b$の取り得る値の範囲は
$0 \lt b \lt \boxed{\ \ ケコ\ \ }+\boxed{\ \ サシ\ \ }\sqrt{\boxed{\ \ スセ\ \ }}$であり、この直方体の体積は
$b^2\sqrt{\boxed{\ \ ソタ\ \ }b^2+\boxed{\ \ チツ\ \ }b+\boxed{\ \ テト\ \ }}$である。

$(3)$$直方体ABCD-EFGH$の全ての面が$1辺$の$長さc$の正方形のとき、すなわち
$直方体ABCD-EFGH$が立方体のとき、正の実数である$c$の値は
$\boxed{\ \ ナニ\ \ }+\sqrt{\boxed{\ \ ヌネ\ \ }}$であり、$立方体ABCD-EFGH$の体積は
$\boxed{\ \ ノハヒ\ \ }+\boxed{\ \ フヘ\ \ }\sqrt{\boxed{\ \ ホマ\ \ }}$である。
この動画を見る 
PAGE TOP