大学入試問題#850「おもろいパズル」 #京都大学(2023) #有理化 #式変形 - 質問解決D.B.(データベース)

大学入試問題#850「おもろいパズル」 #京都大学(2023) #有理化 #式変形

問題文全文(内容文):
$\displaystyle \frac{55}{2\sqrt[ 3 ]{ 9 }+\sqrt[ 3 ]{ 3 }+5}$を有利化せよ

出典:2023年京都大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \frac{55}{2\sqrt[ 3 ]{ 9 }+\sqrt[ 3 ]{ 3 }+5}$を有利化せよ

出典:2023年京都大学
投稿日:2024.06.15

<関連動画>

大学入試問題#211 宮崎大学(2018) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}}\sqrt{ 1+\sin\ x }\ dx$を計算せよ

出典:2018年宮崎大学 入試問題
この動画を見る 

大学入試問題#715「このタイプ苦手」 早稲田理工系学部(2021) 整式

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$f(x)=x^4-x^2+1$
1.$x^6$を$f(x)$で割ったときの余りを求めよ
2.$x^{2021}$を$f(x)$で割ったときの余りを求めよ
3.自然数$n$が3の倍数の時、$(x^2-1)^n-1$が$f(x)$で割り切れることを示せ

出典:2021年早稲田大学理工学部 入試問題
この動画を見る 

岡山大 対数方程式の実数解の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#岡山大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$log_2|3x^3-18x+4\sqrt{ 2 }|=k$の異なる実数解の個数を求めよ$(k$実数$)$

出典:1995年岡山大学 過去問
この動画を見る 

【理数個別の過去問解説】2020年度横浜国立大学 数学 第5問(4)解説

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
横浜国立大学2020年度大問5(4)
aを正の実数とする。$n=1,2,3,…$に対して、
$I_n=\displaystyle \int_{0}^{1}x^{n+a-1}e^{-x}dx$
と定める。次の問に答えよ。
(1)$n=1,2,3,…$に対して、$I_n\leqq \dfrac{1}{n+a}$を示せ。
(2)$n=1,2,3,…$に対して、$I_{n+1}-(n+a)I_n$を求めよ。
(3)極限値$\displaystyle \lim_{n\to\infty}nI_n$を求めよ。
(4)実数b,cに対して、$J_n=n^3\left(I_n+\dfrac{b}{n}+\dfrac{c}{n^2}\right)(n=1,2,3,…)$と定める。数列{$J_n$}が収束するとき、次の問いに答えよ。
(ア)bを求めよ。
(イ)cをaの式で表せ。
(ウ)極限値$\displaystyle \lim_{n\to\infty}J_n$をaの式で表せ。
この動画を見る 

埼玉大(経済)典型的な連立漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n$の一般項
$a_1=b_1=1$
$a_{n+1}=a_n+4b_n$
$b_{n+1}=a_n+b_n$を求めよ.

埼玉大過去問
この動画を見る 
PAGE TOP