大学入試問題#836「このタイプの問題ばかり探していますw」 #長崎大学(2024) #定積分 - 質問解決D.B.(データベース)

大学入試問題#836「このタイプの問題ばかり探していますw」 #長崎大学(2024) #定積分

問題文全文(内容文):
$\displaystyle \int_{-1}^{1} \displaystyle \frac{x^2-x^4}{1+e^x}dx$

出典:2024年長崎大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1} \displaystyle \frac{x^2-x^4}{1+e^x}dx$

出典:2024年長崎大学
投稿日:2024.06.01

<関連動画>

名古屋市立大 積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#名古屋市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4-2x^2$と$y=k$が動画内の図のように交わり$S_1+S_3=S_2$となる。
$k$の値を求めよ。

出典:2001年名古屋市立大学 過去問
この動画を見る 

大阪大 漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#大阪大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=1$

$a_{n+1}\displaystyle \frac{na_n}{2+n(a_n+1)}$

一般項を求めよ

出典:大阪大学 過去問
この動画を見る 

福田の数学〜明治大学2022年理工学部第2問〜平面図形の計量

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#英語(高校生)#平面図形#大学入試過去問(英語)#学校別大学入試過去問解説(英語)#明治大学#数学(高校生)#明治大学
指導講師: 福田次郎
問題文全文(内容文):
平面上の長さ3の線分AB上に、$AP=t\ (0 \lt t \lt 3)$を満たす点Pをとる。
中心を$O$とする半径1の円Oが、線分ABと点Pで接しているとする。
$\alpha=\angle OAB,\ \beta=\angle OBA$
とおく。$\tan\alpha,\ \tan\beta,\tan(\alpha+\beta)$を$t$で表すと、
$\tan\alpha=\boxed{あ},\ \tan\beta=\boxed{い},$
$\ \tan(\alpha+\beta)=\boxed{う}$である。
$0 \lt \alpha+\beta \lt \frac{\pi}{2}$であるようなtの範囲は$\boxed{え}$である。
tは$\boxed{え}$の範囲にあるとする。点$A,\ B$から円Oに引いた接線の接点のうち、
Pでないものをそれぞれ$Q,\ R$とすると、$\angle QAB+\angle RBA \lt \pi$である。
したがって、線分AQのQの方への延長と線分BRのRの方への延長は交わり、
その交点をCとすると、円Oは三角形ABCの内接円である。
このとき、線分CQの長さをtで表すと$\ \boxed{お}$である。
また、$t$が$\boxed{え}$の範囲を動くとき、三角形ABCの面積Sの取り得る値の範囲は$\boxed{か}$である。

2022明治大学理工学部過去問
この動画を見る 

大学入試問題#475「エフ(f)3つ!」 早稲田大学(2004) #逆関数

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
実数$a$に対して
$f(x)=ax+2$とする
$f(f(f(x)))$が$f(x)$の逆関数になるような$a$の値を求めよ。

出典:2004年早稲田大学理工 入試問題
この動画を見る 

福田の数学〜立教大学2023年理学部第3問〜双曲線と直線の囲む面積

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 座標平面上の曲線Cを
C:$y$=$\frac{3}{x}$-8 ($x$>0)
で定める。また$p$を正の定数とし、点$\left(p, \displaystyle\frac{3}{p}-8\right)$におけるCの接線を$l$とする。
さらに、$a$を実数とし、直線$y$=$ax$を$m$とする。このとき、次の問いに答えよ。
(1)$l$の方程式を求めよ。
(2)$l$が原点を通るとき、$p$の値を求めよ。
(3)Cと$m$が異なる2点P,Qを共有するとき、$a$の値の範囲を求めよ。
(4)(3)のとき、Qの$x$座標$x_0$はPの$x$座標$x_1$よりも大きいとする。$x_0$-$x_1$=1であるときの$a$の値を求めよ。
(5)(4)のとき、Cと直線$m$で囲まれる図形の面積を求めよ。
この動画を見る 
PAGE TOP