#岩手大学(2013) #極限 #Shorts - 質問解決D.B.(データベース)

#岩手大学(2013) #極限 #Shorts

問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{\sqrt{ 3x+4 }-2}{\sin3x}$

出典:2013年岩手大学
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{\sqrt{ 3x+4 }-2}{\sin3x}$

出典:2013年岩手大学
投稿日:2024.05.20

<関連動画>

大学入試問題#477「よくある極限の問題」  藤田医科大学(2023) #極限

アイキャッチ画像
単元: #関数と極限#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{(e^x-1)log(4x+1)}{x^2}$

出典:2023年藤田医科大学 入試問題
この動画を見る 

【数学Ⅲ】この公式を使った問題を5分で解いてみる

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
$\displaystyle \lim_{ x \to \infty } (1+\frac{4}{x})=???$
この動画を見る 

数検準1級1次過去問(7番 極限値)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#関数と極限#関数の極限#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
7⃣$\displaystyle \lim_{ n \to \infty } n \{ log(n+3) - logn \}$
$\displaystyle \lim_{ n \to \infty } (1+\frac{1}{n})^n = \displaystyle \lim_{ n \to 0 } (1+n)^{\frac{1}{n}}=e$
この動画を見る 

17神奈川県教員採用試験(数学:9番 無限級数)

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
9⃣$\displaystyle \sum_{n=1}^\infty (\frac{1}{2})^n sin\frac{n \pi}{ 2}$
この動画を見る 

大学入試問題#621「これは、ぜひ挑戦してほしい」 防衛医科大学(2016) #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#防衛医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to \infty } \{\displaystyle \frac{2x-2}{2x-1}-\displaystyle \frac{2}{(2x-1)^2}\}^{3x}$

出典:2016年防衛医科大学 入試問題
この動画を見る 
PAGE TOP