大学入試問題#820「初手は見えるが、次の手は?」 #奈良教育大学(2023) #定積分 - 質問解決D.B.(データベース)

大学入試問題#820「初手は見えるが、次の手は?」 #奈良教育大学(2023) #定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{\cos^3\ x}{\sqrt{ 1+\sin^2 }} dx$

出典:2023年奈良教育大学 入試問題
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#奈良教育大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{\cos^3\ x}{\sqrt{ 1+\sin^2 }} dx$

出典:2023年奈良教育大学 入試問題
投稿日:2024.05.15

<関連動画>

山形大 積分

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a\gt 0$である.
$f(x)=x^4-6a^2x^2+5a^4(a,0)$における接線$\ell$と$f(x)$とで囲まれる面積を求めよ.

山形大過去問
この動画を見る 

#京都帝国大学1935#不定積分_52

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#京都大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{}^{} \sin x \ \cos 2x \ dx$を解け.

1935京都帝国大学過去問題
この動画を見る 

福田の数学〜慶應義塾大学2024総合政策学部第2問〜定積分で表された関数の最大値

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
負でない実数 $t$ に対して定義される関数 $\displaystyle\frac{9}{2}t-3\int^{1}_{0}|(x-t)(x-2t)|dx$ の最大値と、そのときの $t$ の値は?
この動画を見る 

#群馬大学推薦2023#定積分_12#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#群馬大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \displaystyle \frac{\pi}{2n}\sin\displaystyle \frac{k \pi }{2n}$

出典:2023年群馬大学推薦
この動画を見る 

九州大 三次関数 積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+ax^2+bx+c(c \gt 0)$は$(c,0)$で$x$軸と接する。
$f(x)$と$x$軸とで囲まれる面積が最小となる$c$の値を求めよ

出典:2018年九州大学 過去問
この動画を見る 
PAGE TOP