大学入試問題#768 「ゴリゴリ音がでそう」 千葉大学(2005) #定積分 - 質問解決D.B.(データベース)

大学入試問題#768 「ゴリゴリ音がでそう」 千葉大学(2005) #定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{\pi} |3\ \cos\ 2x+7\cos\ x|\ dx$

出典:2005年千葉大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi} |3\ \cos\ 2x+7\cos\ x|\ dx$

出典:2005年千葉大学 入試問題
投稿日:2024.03.18

<関連動画>

福田の数学〜神戸大学2023年理系第1問〜漸化式の解法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 関数$f(x)$を
$f(x)$=$\left\{\begin{array} \\
\frac{1}{2}x+\frac{1}{2} (x≦ 1)\\
2x-1 (x \gt 1)\\
\end{array}\right.$
で定める。aを実数とし、数列$\left\{a_n\right\}$を
$a_1$=a, $a_{n+1}$=$f(a_n)$ (n=1,2,3,...)
で定める。以下の問いに答えよ。
(1)すべての実数xについて$f(x)$≧x が成り立つことを示せ。
(2)a≦1のとき、すべての正の整数nについて$a_n$≦1が成り立つことを示せ。
(3)数列$\left\{a_n\right\}$の一般項をnとaを用いて表せ。

2023神戸大学理系過去問
この動画を見る 

【理数個別の過去問解説】2012年度京都大学 数学 第3問解説

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
京都大学(文理共通)2012年第3問
実数x,yが条件x²+xy+y²=6を満たしながら動くとき、x²y+xy²-x²-2xy-y²+x+y がとりうる値の範囲を求めよ。
この動画を見る 

一橋大 整数問題 ピタゴラス数 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'90一橋大学過去問題
直角三角形の3辺が整数
面積は偶数であることを示せ。

*図は動画内参照
この動画を見る 

山口大 1の十乗根の問題

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#山口大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$
\begin{eqnarray}
&&2023山口大\\
&&2Z^4+(1-\sqrt{5})Z^2+2=0\\
&&①Z^{10}=1 を示せ\\
&&②Z+Z^3+Z^5+Z^7+Z^9の値\\
&&③\cos\frac{\pi}{5}\cos\frac{2\pi}{5} = \frac{1}{4}を示せ

\end{eqnarray}
$
この動画を見る 

早稲田の整数問題!標準的なレベルなのでいい練習になります【早稲田大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
次の条件を満たす正の整数の組(a,b,n)は?である。
n≧2,bは素数,$a^{2}$=$b^{n}$+225

早稲田大過去問
この動画を見る 
PAGE TOP