【高校数学】 数A-17 組合せ④ ・ 道順編 - 質問解決D.B.(データベース)

【高校数学】  数A-17  組合せ④ ・ 道順編

問題文全文(内容文):
◎右の図のような道で、AからBまで行くのに、次の場合の最短経路は何通り?

①全部
②Cを通っていく
③CとDを通っていく
④xのところを通らない
※図は動画内参照
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎右の図のような道で、AからBまで行くのに、次の場合の最短経路は何通り?

①全部
②Cを通っていく
③CとDを通っていく
④xのところを通らない
※図は動画内参照
投稿日:2014.05.31

<関連動画>

場合の数 塗分け【セトリの算数がていねいに解説】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
・色の異なる7個の玉をつないで首飾りにする方法は何通りあるか。
・正三角柱の5つの面を青、白、赤、黄、緑の5色すべてを使って塗分ける方法は何通りあるか。
この動画を見る 

福田の数学〜慶應義塾大学2023年医学部第2問〜反復試行の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ nを自然数とする。A君とB君の2人が以下の試合Tをnセット行い、それぞれが得点をためていくとする。
試合T:2人で腕ずもうを繰り返し行う。毎回、A君, B君のどちらも勝つ確率は$\frac{1}{2}$ずつである。どちらかが先に2勝したら、腕ずもうを行うのをやめる。2勝0敗の者は2点を、2勝1敗の者は1点を得る。2勝しなかった者の得点は0点である。
A君が1セット目からnセットまでに得た点の合計を$a_n$とし、B君が1セット目からnセットまでに得た点の合計を$b_n$とする。
(1)n=1とする。$a_1$=2である確率は$\boxed{\ \ あ\ \ }$であり、$a_1$=1である確率は$\boxed{\ \ い\ \ }$である。
(2)n≧4とする。試合Tをnセット行ううち、A君が2点を得るのがちょうど2セット、かつ1点を得るのがちょうど2セットである確率は$\frac{\boxed{\ \ う\ \ }}{\boxed{\ \ え\ \ }}$である。
(3)n≧2とする。$a_n$=$n$+2かつ$b_n$=0である確率は$\frac{\boxed{\ \ お\ \ }}{\boxed{\ \ か\ \ }}$である。
(4)$a_n$=2である確率は$\frac{\boxed{\ \ き\ \ }}{\boxed{\ \ く\ \ }}$である。
(5)n=4とする。$a_4$>$b_4$である確率は$\frac{\boxed{\ \ け\ \ }}{\boxed{\ \ こ\ \ }}$である。

2023慶應義塾大学医学部過去問
この動画を見る 

【数A】【場合の数】硬貨で支払える金額 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の場合硬貨の一部または全部を使ってちょうど支払うことができる金額は何通りあるか
(1)10円硬貨4枚、50円硬貨1枚、100円硬貨3枚
(2)10円硬貨2枚、50円硬貨3枚、100円硬貨3枚
(3)10円硬貨7枚、50円硬貨1枚、100円硬貨3枚

10円、50円、100円の3種類の硬貨を使ってちょうど250円支払うには何通りの支払いの方法があるか
ただし、どの硬貨も十分な枚数があり、使わない硬貨があっても良いものとする
この動画を見る 

福田のわかった数学〜高校1年生081〜確率(1)くじ引き(1)

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{A}$ 確率(1) くじ引き(1)
10本中3本当たりのくじから
(1)同時に3本のくじを引いたとき、1本だけ当たる確率を求めよ。
(2)A,B,Cの3人が順に1本ずつ引いたとき(元に戻さない)、
1人だけが当たる確率を求めよ。
この動画を見る 

福田のおもしろ数学107〜京都大学の有名問題〜車両の色塗り

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$n$両編成($n$≧2)に各車両に赤、青、黄の3色のいずれかを塗る。隣り合った車両の少なくとも一方が赤になるような塗り方は何通りあるか。
この動画を見る 
PAGE TOP