問題文全文(内容文):
$\displaystyle\frac{a_1^2+a_2^2+...+a_{100}^2}{a_1+a_2+...+a_{100}}$=100 を満たす実数$a_1$の最大値を求めてください。
$\displaystyle\frac{a_1^2+a_2^2+...+a_{100}^2}{a_1+a_2+...+a_{100}}$=100 を満たす実数$a_1$の最大値を求めてください。
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\displaystyle\frac{a_1^2+a_2^2+...+a_{100}^2}{a_1+a_2+...+a_{100}}$=100 を満たす実数$a_1$の最大値を求めてください。
$\displaystyle\frac{a_1^2+a_2^2+...+a_{100}^2}{a_1+a_2+...+a_{100}}$=100 を満たす実数$a_1$の最大値を求めてください。
投稿日:2024.06.28