大学入試問題#707「たぶん良問だと思う」 佐賀大学(2013) 方程式 - 質問解決D.B.(データベース)

大学入試問題#707「たぶん良問だと思う」 佐賀大学(2013) 方程式

問題文全文(内容文):
$x+\displaystyle \frac{1}{x}=\displaystyle \frac{y}{8}+\displaystyle \frac{8}{y}=\displaystyle \frac{x}{y}+\displaystyle \frac{y}{x}$をみたす実数$x,y$の組をすべて求めよ

出典:2013年佐賀大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学
指導講師: ますただ
問題文全文(内容文):
$x+\displaystyle \frac{1}{x}=\displaystyle \frac{y}{8}+\displaystyle \frac{8}{y}=\displaystyle \frac{x}{y}+\displaystyle \frac{y}{x}$をみたす実数$x,y$の組をすべて求めよ

出典:2013年佐賀大学 入試問題
投稿日:2024.01.17

<関連動画>

福田の数学〜東京医科歯科大学2022年理系第3問〜定積分と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#積分とその応用#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
曲線$C:y=f(x) (0 \leqq x \lt 1)$が次の条件を満たすとする。
・$f(0)=0$
・$0 \lt x \lt 1$のとき$f'(x) \gt 0$
・$0 \lt a \lt 1$を満たすすべての実数aについて、曲線C上の点$(a, f(a))$
における接線と直線$x=1$との交点をQとするとき、$PQ=1$
この時以下の問いに答えよ。
(1)$f'(x)$を求めよ。
(2)$\int_0^{\frac{1}{2}}(1-x)f'(x)dx$の値を求めよ。
(3)曲線Cとx軸、直線$x=1$、直線$y=f(\frac{1}{2})$で囲まれた部分の面積を求めよ。

2022東京医科歯科大学理系過去問
この動画を見る 

大学入試問題#687「なんか見える」 東海大学医学部(2014)

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師: ますただ
問題文全文(内容文):
$a \gt 0$のとき、
$a+\displaystyle \frac{17}{a+4}$の最小値を求めよ

出典:2014年東海大学医学部 入試問題
この動画を見る 

愛媛大 解けないタイプの漸化式

アイキャッチ画像
単元: #数列#愛媛大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023愛媛大学過去問題
$a_{1}=2$
$a_{n+1}=a_{n}^2+2(n=1,2,3,\cdots)$
mが自然数なら$a_{2m}$は6の倍数であることを示せ
この動画を見る 

一橋大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$(a,b,c)$の組を求めよ。
但し$a$は奇数
$a^4=b^2+2^c$

出典:2018年一橋大学 過去問
この動画を見る 

#高知工科大学2024#定積分_27#元高校教員

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#高知工科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} \cos^2x dx$

出典:2024年高知工科大学
この動画を見る 
PAGE TOP