問題文全文(内容文):
$f(x)=\displaystyle \frac{1}{e^x+e^{-x}}$
$x=log(\tan\theta)$とおいて
$\displaystyle \int_{0}^{\frac{1}{2}log3} f(x) dx$を求めよ
出典:2018年静岡大学 入試問題
$f(x)=\displaystyle \frac{1}{e^x+e^{-x}}$
$x=log(\tan\theta)$とおいて
$\displaystyle \int_{0}^{\frac{1}{2}log3} f(x) dx$を求めよ
出典:2018年静岡大学 入試問題
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#静岡大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$f(x)=\displaystyle \frac{1}{e^x+e^{-x}}$
$x=log(\tan\theta)$とおいて
$\displaystyle \int_{0}^{\frac{1}{2}log3} f(x) dx$を求めよ
出典:2018年静岡大学 入試問題
$f(x)=\displaystyle \frac{1}{e^x+e^{-x}}$
$x=log(\tan\theta)$とおいて
$\displaystyle \int_{0}^{\frac{1}{2}log3} f(x) dx$を求めよ
出典:2018年静岡大学 入試問題
投稿日:2023.11.14