大学入試問題#649「慌てない慌てない」 青山学院大(2006) 定積分 - 質問解決D.B.(データベース)

大学入試問題#649「慌てない慌てない」 青山学院大(2006) 定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{1} x(1+x^2\sin\displaystyle \frac{\pi\ x}{2}) dx$

出典:2006年青山学院大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} x(1+x^2\sin\displaystyle \frac{\pi\ x}{2}) dx$

出典:2006年青山学院大学 入試問題
投稿日:2023.11.15

<関連動画>

福田の数学〜上智大学2022年理工学部第4問〜線分の中点の軌跡と直線の通過範囲

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#軌跡と領域#2次曲線#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
座標平面上に円C$:x^2+y^2=4$と点$P(6,\ 0)$がある。円C上を点$A(2a,\ 2b)$が
動くとき、線分APの中点をMとし、線分APの垂直二等分線をlとする。
(1)点Mの軌跡の方程式を求め、その軌跡を図示せよ。
(2)直線lの方程式をa,\ bを用いて表せ。
(3)直線lが通過する領域を表す不等式を求め、その領域を図示せよ。

2022上智大理工学部過去問
この動画を見る 

大学入試問題#730「総和と間違えそう」 早稲田大学商学部(2011) 個数の処理

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$n$を正の整数とする。
$10^n$の正の約数すべての積の値を求めよ。

出典:2011年早稲田大学商学部 入試問題
この動画を見る 

【化学】有機化学:2021年度慶應義塾大学薬学部問4(2) チャプター2

アイキャッチ画像
単元: #化学#有機#大学入試過去問(化学)#酸素を含む脂肪族化合物#芳香族化合物#慶應義塾大学#理科(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2021年度慶應義塾大学薬学部問4(2) チャプター2
化合物Aは、水素原子、炭素原子、酸素原子のみから構成され、ベンゼン環を2個含む分子量500以下のエステルである。0.846gの化合物Aを完全燃焼すると、二酸化炭素2.51gと水0.594gを生じた。化合物Aに水酸化ナトリウム水溶液を加えて加熱し加水分解すると、化合物Bのナトリウム塩と化合物Cが生成した。化合物Bを過マンガン酸カリウムで酸化すると化合物Dが生成した。化合物Dと化合物Eを次々と縮合重合させると、高分子化合物Fが得られ、これは繊維として衣料品に用いられる他、樹脂としてペットボトルの原料となる。
一方、化合物Cに濃硫酸を加え170°Cで加熱したところ、化合物Cおよびその構造異性体H、Iが生成した。化合物Hと化合物Iはシスートランス異性体の関係にあり、化合物 Hはシス形、化合物Iはトランス形である。化合物Cをオゾン分解したところ、化合物Jと化合物Kが得られた。また、化合物 Hをオゾン分解したところ、ベンズアルデヒドと化合物Lが得られた。化合物Jと化合物Lはフェーリング液を還元し赤色沈澱を生成した。化合物Kはフェーリング液を還元しなかったが、ヨードホルム反応は陽性だった。なお、オゾン分解の反応経路を図1に示す。
問2 化合物D、E、Kの化合物名を解答用紙に書きなさい。
この動画を見る 

大学入試問題#526「イカツイのは見た目だけ」 久留米大学医学部(2017) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#久留米大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{4}{x^7(x^{-6}+1)^{\frac{1}{3}}} dx$

出典:2017年久留米大学医学部 入試問題
この動画を見る 

整数+3乗根の展開 山梨大

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2017年 山梨大学 過去問

$n$ 自然数
${(1+\sqrt[3]{2})}^x$は整数$a_n$,$b_n$,$c_n$を用いて
$a_n+b_n\sqrt[3]{2}+\frac{c_n}{\sqrt[3]{2}}$で表せることを証明
この動画を見る 
PAGE TOP