大学入試問題#671「方針が見えやすい良問」 東京医科大学(2001) - 質問解決D.B.(データベース)

大学入試問題#671「方針が見えやすい良問」 東京医科大学(2001)

問題文全文(内容文):
$\displaystyle \int_{1}^{\frac{3}{2}} \displaystyle \frac{x^2}{\sqrt{ 2x-x^2 }} dx$

出典:2001年東京医科大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東京医科大学#東京医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{\frac{3}{2}} \displaystyle \frac{x^2}{\sqrt{ 2x-x^2 }} dx$

出典:2001年東京医科大学 入試問題
投稿日:2023.12.08

<関連動画>

福田の数学〜慶應義塾大学2021年看護医療学部第4問〜空間ベクトルと三角形の面積

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$ $P(0,0,-1),\ Q(0,1,-2),\ R(1,0,-2)$を頂点とする三角形の面積は$\boxed{\ \ ヘ\ \ }$である。
aを実数とし、$\overrightarrow{ v }=(a,a,3)$とする。点P',Q',R'を
$\overrightarrow{ OP' }=\overrightarrow{ OP }+\overrightarrow{ v },\ \overrightarrow{ OQ' }=\overrightarrow{ OQ }+\overrightarrow{ v },\ \overrightarrow{ OR' }=$
$\overrightarrow{ OR }+\overrightarrow{ v }$
によって定め、さらに線分$PP',QQ',RR'$が$xy$平面と交わる点を$P'',Q'',R''$とする。
このとき、$P''$の座標は$\boxed{\ \ ホ\ \ }$、$Q''$の座標は$\boxed{\ \ マ\ \ }$、$R''$の座標は$\boxed{\ \ ミ\ \ }$である。
$\triangle P''Q''R''$が正三角形になるのは$a=\boxed{\ \ ム\ \ }$のときである。
3点$P'',Q'',R''$が同一直線上にあるのは$a=\boxed{\ \ メ\ \ }$のときである。$a \gt \boxed{\ \ メ\ \ }$のとき、
$\triangle P''Q''R''$の面積を$a$で表すと$\boxed{\ \ モ\ \ }$となる。

2021慶應義塾大学看護医療学部過去問
この動画を見る 

大学入試問題#841「因数分解が丸出し・・・・」 #宮崎大学(2022) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x^3-1}{(x-1)(x-2)} dx$

出典:2022年宮崎大学
この動画を見る 

#奈良教育大学(2014) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#奈良教育大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{2} |e^x-e| dx$

出典:2014年奈良教育大学
この動画を見る 

福田の数学〜神戸大学2023年文系第2問〜確率の基本性質

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ A, Bの2人が、はじめに、Aは2枚の硬貨を、Bは1枚の硬貨を持っている。
2人は次の操作(P)を繰り返すゲームを行う。
(P)2人は持っている硬貨すべてを同時に投げる。それぞれが投げた硬貨のうち表がでた硬貨の枚数を数え、その枚数が少ない方が相手に1枚の硬貨を渡す。
操作(P)を繰り返し、2人のどちらかが持っている硬貨の枚数が3枚となった時点でこのゲームは終了する。操作(P)をn回繰り返し行ったとき、Aが持っている硬貨の枚数が3枚となってゲームが終了する確率を$p_n$とする。ただし、どの硬貨も1回投げたとき、表の出る確率は$\frac{1}{2}$とする。以下の問いに答えよ。
(1)$p_1$の値を求めよ。
(2)$p_2$の値を求めよ。
(3)$p_3$の値を求めよ。

2023神戸大学文系過去問
この動画を見る 

大学入試問題#644 青山学院大(2022) #積分方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: ますただ
問題文全文(内容文):
$x \gt 0$
$f(x)=\displaystyle \int_{1}^{e} log(xt)f(t) \ dt+x$のとき$f(x)$を求めよ

出典:2022年青山学院大学 入試問題
この動画を見る 
PAGE TOP