三重大学(2016) #Shorts - 質問解決D.B.(データベース)

三重大学(2016) #Shorts

問題文全文(内容文):
$\displaystyle \int_{0}^{1} xe^{-\frac{1}{2}x^2} dx$

出典:2016年三重大学
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} xe^{-\frac{1}{2}x^2} dx$

出典:2016年三重大学
投稿日:2023.09.04

<関連動画>

大学入試問題#204 東京大学(改) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{\sqrt{ 3 }}\sqrt{ 1+\displaystyle \frac{1}{x^2} }\ dx$

出典:東京大学 入試問題
この動画を見る 

【高校数学】毎日積分64日目~47都道府県制覇への道~【⑧福岡】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$xy$平面上の曲線$C$を、媒介変数tを用いて次のように定める。
$x=t+2\sin^{2t}, y=t+\sin t (0\lt t\lt \pi)$
以下の問いに答えよ。
(1)曲線$C$に接する直線のうち$y$軸と平行なものがいくつあるか求めよ。
(2)曲線$C$のうち$y≦x$の領域にある部分と直線$y=x$で囲まれた図形の面積を求めよ。
【九州大学 2023】
この動画を見る 

大学入試問題#184 早稲田大学 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{4}^{16}\sqrt{ x }\ e^{-\sqrt{ x }}dx$を計算せよ

出典:早稲田大学 入試問題
この動画を見る 

数学「大学入試良問集」【19−3 f(sinx)と置換積分】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$f(x)$が$0 \leqq x \leqq 1$で連続な関数であるとき
$\displaystyle \int_{0}^{\pi}xf(\sin\ x)dx=\displaystyle \frac{\pi}{2}\displaystyle \int_{0}^{\pi}f(\sin\ x)dx$
が成立することを示し、これを用いて$\displaystyle \int_{0}^{\pi}\displaystyle \frac{x\ \sin\ x}{3+\sin^2x}dx$を求めよ。
この動画を見る 

#大学への数学「大学受験で、たまに使う技」 学力コンテスト (1)(2) #定積分

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#色々な関数の導関数#定積分#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)=\sqrt{ \displaystyle \frac{x}{1+x} }(0 \leqq x \leqq 1)$
(1)
逆関数$f^{-1}(x)$を求めよ。

(2)
$I=\displaystyle \int_{0}^{\frac{\pi}{2}} \sqrt{ \sin\ x-\sin^2x }\ dx$

(3)
$\displaystyle \int_{0}^{\frac{\pi}{2}} \sqrt{ \sin^3x-\sin^4x }\ dx$
この動画を見る 
PAGE TOP