問題文全文(内容文):
$\displaystyle \lim_{ x \to \infty } \{\displaystyle \frac{2x-2}{2x-1}-\displaystyle \frac{2}{(2x-1)^2}\}^{3x}$
出典:2016年防衛医科大学 入試問題
$\displaystyle \lim_{ x \to \infty } \{\displaystyle \frac{2x-2}{2x-1}-\displaystyle \frac{2}{(2x-1)^2}\}^{3x}$
出典:2016年防衛医科大学 入試問題
単元:
#大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#防衛医科大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to \infty } \{\displaystyle \frac{2x-2}{2x-1}-\displaystyle \frac{2}{(2x-1)^2}\}^{3x}$
出典:2016年防衛医科大学 入試問題
$\displaystyle \lim_{ x \to \infty } \{\displaystyle \frac{2x-2}{2x-1}-\displaystyle \frac{2}{(2x-1)^2}\}^{3x}$
出典:2016年防衛医科大学 入試問題
投稿日:2023.10.15