問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } (\displaystyle \frac{x\ \tan\ x}{\sqrt{ \cos2x }-\cos\ x}+\displaystyle \frac{x}{\tan2x})$
出典:2021年岩手大学 入試問題
$\displaystyle \lim_{ x \to 0 } (\displaystyle \frac{x\ \tan\ x}{\sqrt{ \cos2x }-\cos\ x}+\displaystyle \frac{x}{\tan2x})$
出典:2021年岩手大学 入試問題
単元:
#大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } (\displaystyle \frac{x\ \tan\ x}{\sqrt{ \cos2x }-\cos\ x}+\displaystyle \frac{x}{\tan2x})$
出典:2021年岩手大学 入試問題
$\displaystyle \lim_{ x \to 0 } (\displaystyle \frac{x\ \tan\ x}{\sqrt{ \cos2x }-\cos\ x}+\displaystyle \frac{x}{\tan2x})$
出典:2021年岩手大学 入試問題
投稿日:2023.10.17