大学入試問題#593「計算ミスに気をつける」 福島大学(1987) #極限 - 質問解決D.B.(データベース)

大学入試問題#593「計算ミスに気をつける」 福島大学(1987) #極限

問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \displaystyle \frac{n}{(2n+k)^2}log\displaystyle \frac{n+2k}{n}$

出典:1987年福島大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#数列の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \displaystyle \frac{n}{(2n+k)^2}log\displaystyle \frac{n+2k}{n}$

出典:1987年福島大学 入試問題
投稿日:2023.07.21

<関連動画>

円周率πが無理数であることの証明(数III)

アイキャッチ画像
単元: #関数と極限#積分とその応用#数列の極限#不定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
定理(1947,IvanNiren)
πは無理数である

補題1 
${}^∀a \in \mathbb{R}$ , $\displaystyle \lim_{ n \to \infty } \frac{a^n}{n!}=0$ $(n \in \mathbb{N})$
補題2
$f(x)=\frac{1}{n!}p^nx^n(\pi - x)^n$ $(p,n \in \mathbb{N})$
nが十分大きいとき
$0 < \int_0^{\pi} f(x) dx < 1$
この動画を見る 

長岡技術科大 ナイスな問題

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
2008長岡技術科学大学過去問題
①$\displaystyle\sum_{n=2}^{\infty}\frac{1}{n^2-\frac{1}{4}}$を求めよ
②$\displaystyle\sum_{n=1}^{\infty}\frac{1}{n^2}<\frac{5}{3}$を示せ
この動画を見る 

福田の数学〜大阪大学2022年理系第4問〜漸化式とはさみうちの原理

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$f(x)=\log(x+1)+1$とする。以下の問いに答えよ。
(1)方程式$f(x)=x$は、$x \gt 0$の範囲でただ1つの解を
もつことを示せ。
(2)(1)の解を$\alpha$とする。実数$x$が$0 \lt x \lt \alpha$を満たすならば、
次の不等式が成り立つことを示せ。
$0 \lt \frac{\alpha-f(x)}{\alpha-x} \lt f'(x)$
(3)数列$\left\{x_n\right\}$を
$x_1=1, x_{n+1}=f(x_n) (n=1,2,3,\ldots\ldots)$
で定める。このとき、全ての自然数nに対して
$\alpha -x_{n+1} \lt \frac{1}{2}(\alpha -x_n)$
が成り立つことを示せ。
(4)(3)の数列$\left\{x_n\right\}$について、$\lim_{n \to \infty}x_n=\alpha$を示せ。

2022大阪大学理系過去問
この動画を見る 

福田のわかった数学〜高校3年生理系008〜極限(8)

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(8)
自然数$N$は$n$桁の数とする。
$\displaystyle\lim_{n \to \infty}\displaystyle \frac{\log_{10}N}{n}$を求めよ。
この動画を見る 

福田のおもしろ数学030〜調和級数は発散しない?〜驚くべき事実がここに

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
調和級数

$1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}…$

について解説します
この動画を見る 
PAGE TOP