【数Ⅲ-144】三角関数の積分② - 質問解決D.B.(データベース)

【数Ⅲ-144】三角関数の積分②

問題文全文(内容文):
数Ⅲ(三角関数の積分➁)

Q.次の不定積分を求めよ。

⑤$\int cos3xcos2xdx$

⑥$\int cos4xsin2xdx$

⑦$\int sinxsin2xdx$

⑧$\int sin3θ cosθdθ$
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(三角関数の積分➁)

Q.次の不定積分を求めよ。

⑤$\int cos3xcos2xdx$

⑥$\int cos4xsin2xdx$

⑦$\int sinxsin2xdx$

⑧$\int sin3θ cosθdθ$
投稿日:2019.06.06

<関連動画>

【数Ⅲ】【積分とその応用】不定積分置換積分、部分積分2 ※問題文は概要欄

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の不定積分を求めよ。
(1) $\displaystyle \int \frac{x^2+x+1}{x^2+1}~dx$
(2) $\displaystyle \int \frac{x^4}{x^2-1}~dx$


(1)次の等式が成り立つように、定数$a,b,c$の値を定めよ。
$\dfrac{3x+2}{x(x+1)^2}=\dfrac{a}{x}+\dfrac{b}{x+1}+\dfrac{c}{(x+1)^2}$

(2)不定積分$\displaystyle \int \dfrac{3x+2}{x(x+1)^2}~dx$を求めよ。


次の不定積分を求めよ。
(1) $\displaystyle \int \frac{dx}{x(x^2-1)}$
(2) $\displaystyle \int \frac{dx}{x^2(x+2)}$
(3) $\displaystyle \int \frac{dx}{x(x^2+1)}$
(4) $\displaystyle \int \frac{x^2+1}{x^4-5x^2+4}~dx$
(5) $\displaystyle \int \frac{3x+2}{x(x+1)^3}~dx$
(6) $\displaystyle \int \frac{x^4}{x^3-3x+2}~dx$

次の不定積分を求めよ。
(1) $\displaystyle \int \frac{dx}{\sqrt{x+1}-\sqrt x}$
(2) $\displaystyle \int \frac{x}{\sqrt{3x+4}-2}~dx$
この動画を見る 

大学入試問題#573「沼にはまらないように!!」 京都帝国大学(1937) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{dx}{x(a^3+x^3)}$

出典:1937年京都帝国大学 入試問題
この動画を見る 

大学入試問題#341「部分積分の心を・・・」 立教大学 #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int (\sin\ x+x\ \cos\ x)log\ x\ dx$

出典:立教大学 入試問題
この動画を見る 

#高専_4#不定積分#元高専教員

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
以下の不定積分を解け。
$\displaystyle \int \displaystyle \frac{(log t)^2}{t} dt$
この動画を見る 

福田のおもしろ数学454〜積分に関するシュワルツの不等式の証明と等号成立条件

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#積分とその応用#不定積分#定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$p\leqq x \leqq q$で定義された連続関数$f(x),g(x)$に対して

$\left(\displaystyle \int_{p}^{q} f(x)^2 dx\right)\left(\displaystyle \int_{p}^{q}g(x)^2 dx \right) \geqq \left(\displaystyle \int_{p}^{q} f(x)g(x)dx\right)^2$

を証明して下さい。

また等号成立条件も調べて下さい。
   
この動画を見る 
PAGE TOP