【高校数学】 数Ⅰ-56 2次方程式③ ・ 判別式編 - 質問解決D.B.(データベース)

【高校数学】  数Ⅰ-56  2次方程式③ ・ 判別式編

問題文全文(内容文):
①$x^2+4x+3=0$
②$5x^2-7x+3=0$
③$4x^2+12x+9=0$
④$3x^2-8x+7=0$
⑤$2x^2-3x-3=0$
⑥$8x^2-20x+11=0$
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$x^2+4x+3=0$
②$5x^2-7x+3=0$
③$4x^2+12x+9=0$
④$3x^2-8x+7=0$
⑤$2x^2-3x-3=0$
⑥$8x^2-20x+11=0$
投稿日:2014.08.30

<関連動画>

【中学数学】2次関数の問題~2024年度北海道公立高校入試大問3~【高校受験】

アイキャッチ画像
単元: #数学(中学生)#中3数学#数Ⅰ#2次関数#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
ユキさんたちのクラスでは、数学の授業で関数のグラフについてコンピュータを使って学習しています。次の問いに答えなさい。
問1 先生が提示した画面1には、関数$y=x^{ 2 }$のグラフと、このグラフ上の2点A、Bを通る直線が表示されています。点Aの$x$座標は3、点Bの$x$座標は-2です。点Oは原点とします。
ユキさんは、画面1を見て、2点A、Bを通る直線の式を求めたいと考え、求め方について、次のような見通しを立てています。

ユキさんの見通し
2点A、Bを通る直線の式を求めるには、2点A、Bの座標がわかれば良い。

次の(1)、(2)に答えなさい。
(1)点Aの$y$座標を求めなさい。
(2)ユキさんの見通しを用いて、2点A、Bを通る直線の式を求めなさい。

問2 △PQRが直角二等辺三角形になる時の$t$の値を求めなさい。

先生が提示した画面2には2つの関数$y=2x^{ 2 }$・・・①,$y=\frac{1}{2}x^{ 2 }$・・・②のグラフが表示されています。①のグラフ上に点Pがあり、点Pの$x$座標は$t$です。点Qは、点Pと$y$軸について対称な点です。また、点Rは、点Pを通り、$y$軸に平行な直線と②のグラフとの交点です。点Oは原点とし、$t$>0とします。

ユキさんたちは、点Pを①のグラフ上で動かすことで、△PQRがどのように変化するかについて、話し合っています。
ユキさん「点Pを動かすと、点Qと点Rも同時に動くね。」
ルイさん「このとき、△PQRはいつでも直角三角形になるね。」
ユキさん「・・・あれ?△PQRが直角に等辺三角形に見えるときがあるよ?」
ルイさん「本当に直角二等辺三角形になるときがあるのかな。」
ユキさん「じゃあ、△PQRが直角二等辺三角形になるときの点Pの座標を求めてみようか。」
ルイさん「点Pの座標を求めるには、$t$の値がわかればいいね。」

△PQRが直角二等辺三角形になるときの$t$の値を求めなさい。
この動画を見る 

【数Ⅰ】図形と計量:三角比:【超重要】斜辺と角から線分の長さを求める!

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
【超重要】直角三角形の「斜辺」と「角」を用いて他の辺を表せ!
この動画を見る 

【数学】中高一貫校用問題集:図形と式:軌跡と方程式:2直線の交点の軌跡(直交する場合)

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#図形と計量#図形と方程式#数学(高校生)
教材: #中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
mが実数全体を取って動くとき、$x+my-1=0,mx-y+2m=0$の交点Pの軌跡を求めよ
この動画を見る 

【数Ⅰ】数と式:√の外し方のルールを分かりやすく教えます!!

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\sqrt{a^2}$の$\sqrt{}$を外したa??2乗だったらただ√が取れると思っていませんか??この動画を見れば、文字があっても正しく√を外せるようになりますよ!!
この動画を見る 

#北海道大学1957#方程式_65

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#一次不等式(不等式・絶対値のある方程式・不等式)#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: ますただ
問題文全文(内容文):
$\dfrac{10x-10^{-x}}{10x+10^{-x}}=a \ (\vert a \vert \gt 1)$
$x$について解け.

1957北海道大学過去問題
この動画を見る 
PAGE TOP