大学入試問題#576「逆に閃かないと苦戦」 京都帝国大学(1938) #不定積分 - 質問解決D.B.(データベース)

大学入試問題#576「逆に閃かないと苦戦」 京都帝国大学(1938) #不定積分

問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{\sin\theta+\cos\theta}{3+\sin2\theta} d\theta$

出典:1938年京都帝国大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{\sin\theta+\cos\theta}{3+\sin2\theta} d\theta$

出典:1938年京都帝国大学 入試問題
投稿日:2023.06.26

<関連動画>

#富山大学薬学部2018#不定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#富山大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{log(x+2)}{x^2} dx$

出典:2018年富山大学薬学部
この動画を見る 

【数Ⅲ】置換積分【理屈と手順を分けて考える。】

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: めいちゃんねる
問題文全文(内容文):
$ (1)\displaystyle \int 2x(x^2+1)^3 dxを求めよ.$
$ (2)\displaystyle \int \dfrac{x}{x^2+1}dxを求めよ.$
$ (3)\displaystyle \int_{1}^{2}\dfrac{x}{x^2+1}dxを求めよ.$
$ (4)\displaystyle \int_{0}^{1} x\sqrt{2x+1}dxを求めよ.$
この動画を見る 

大学入試問題#182 横浜国立大学 不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int (\displaystyle \frac{log\ x}{x})^2dx$を計算せよ

出典:横浜国立大学 入試問題
この動画を見る 

福田の数学〜立教大学2025理学部第1問(3)〜定積分の計算

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(3)定積分$\displaystyle \int_{0}^{\frac{7}{6}\pi}\sin x \sin 2x \ dx$の値は

$\boxed{エ}$である。

$2025$年立教大学理学部過去問題
この動画を見る 

【数Ⅲ】【積分とその応用】不定積分置換積分、部分積分2 ※問題文は概要欄

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の不定積分を求めよ。
(1) $\displaystyle \int \frac{x^2+x+1}{x^2+1}~dx$
(2) $\displaystyle \int \frac{x^4}{x^2-1}~dx$


(1)次の等式が成り立つように、定数$a,b,c$の値を定めよ。
$\dfrac{3x+2}{x(x+1)^2}=\dfrac{a}{x}+\dfrac{b}{x+1}+\dfrac{c}{(x+1)^2}$

(2)不定積分$\displaystyle \int \dfrac{3x+2}{x(x+1)^2}~dx$を求めよ。


次の不定積分を求めよ。
(1) $\displaystyle \int \frac{dx}{x(x^2-1)}$
(2) $\displaystyle \int \frac{dx}{x^2(x+2)}$
(3) $\displaystyle \int \frac{dx}{x(x^2+1)}$
(4) $\displaystyle \int \frac{x^2+1}{x^4-5x^2+4}~dx$
(5) $\displaystyle \int \frac{3x+2}{x(x+1)^3}~dx$
(6) $\displaystyle \int \frac{x^4}{x^3-3x+2}~dx$

次の不定積分を求めよ。
(1) $\displaystyle \int \frac{dx}{\sqrt{x+1}-\sqrt x}$
(2) $\displaystyle \int \frac{x}{\sqrt{3x+4}-2}~dx$
この動画を見る 
PAGE TOP