問題文全文(内容文):
①$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 + x-12 \leqq 0 \\
x^2 - 3x+2 \gt0
\end{array}
\right.
\end{eqnarray}$
②$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 - 4x+1 \geqq 0 \\
-x^2 - 12+ \gt x
\end{array}
\right.
\end{eqnarray}$
③$2 \geqq x^2-x \geqq 4x-4$
①$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 + x-12 \leqq 0 \\
x^2 - 3x+2 \gt0
\end{array}
\right.
\end{eqnarray}$
②$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 - 4x+1 \geqq 0 \\
-x^2 - 12+ \gt x
\end{array}
\right.
\end{eqnarray}$
③$2 \geqq x^2-x \geqq 4x-4$
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 + x-12 \leqq 0 \\
x^2 - 3x+2 \gt0
\end{array}
\right.
\end{eqnarray}$
②$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 - 4x+1 \geqq 0 \\
-x^2 - 12+ \gt x
\end{array}
\right.
\end{eqnarray}$
③$2 \geqq x^2-x \geqq 4x-4$
①$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 + x-12 \leqq 0 \\
x^2 - 3x+2 \gt0
\end{array}
\right.
\end{eqnarray}$
②$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 - 4x+1 \geqq 0 \\
-x^2 - 12+ \gt x
\end{array}
\right.
\end{eqnarray}$
③$2 \geqq x^2-x \geqq 4x-4$
投稿日:2014.09.23