大学入試問題#534「みためがなんとも」日本大学 年度不明 #定積分 - 質問解決D.B.(データベース)

大学入試問題#534「みためがなんとも」日本大学 年度不明 #定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{e-1} \pi(1+x)^{\pi-1}\sin\{\pi\ log(1+x)\} dx$

出典:日本大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#日本大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{e-1} \pi(1+x)^{\pi-1}\sin\{\pi\ log(1+x)\} dx$

出典:日本大学 入試問題
投稿日:2023.05.13

<関連動画>

大学入試問題#500「基本に沿って」 電気通信大学後期(2022) #区分求積法

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \displaystyle \frac{n^2k+n^3}{k^4+2n^2k^2+n^4}$

出典:2022年電気通信大学後期 入試問題
この動画を見る 

大学入試問題#329 熊本大学(2013) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#熊本大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{3}}^{\frac{\pi}{2}}\displaystyle \frac{\sin\displaystyle \frac{\theta}{2}}{1+\sin\displaystyle \frac{\theta}{2}}d\theta$

出典:2013年熊本大学 入試問題
この動画を見る 

大学入試問題#8 東京理科大学(2021) 定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
次の定積分を計算せよ。

$I_0=\displaystyle \int_{0}^{\frac{\pi}{4}}\displaystyle \frac{\sin\ x-\sqrt{ 2 }\ \cos\ x}{\sqrt{ 2 }\ \sin\ x+\cos\ x}\ dx$

$I_1=\displaystyle \int_{0}^{\frac{\pi}{4}}\displaystyle \frac{\sin\ x}{\sqrt{ 2 }\ \sin\ x+\cos\ x}\ dx$

$I_2=\displaystyle \int_{0}^{\frac{\pi}{4}}\displaystyle \frac{\cos\ x}{\sqrt{ 2 }\ \sin\ x+\cos\ x}\ dx$

出典:2021年東京理科大学 入試問題
この動画を見る 

【誘導形式:概要欄】大学入試問題#181 九州大学改(1987) 定積分 ウォリス積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}x^8\sqrt{ 1-x^2 }\ dx$

出典:1987年九州大学 入試問題
この動画を見る 

大学入試問題#136 南山大学(2021) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#南山大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1}|2x(1-x^2)e^{-x^2}|dx$を計算せよ。

出典:2021年南山大学 入試問題
この動画を見る 
PAGE TOP