問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \displaystyle \frac{n^2k+n^3}{k^4+2n^2k^2+n^4}$
出典:2022年電気通信大学後期 入試問題
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \displaystyle \frac{n^2k+n^3}{k^4+2n^2k^2+n^4}$
出典:2022年電気通信大学後期 入試問題
チャプター:
00:00 イントロ(問題紹介)
00:12 本編スタート
05:44 作成した解答①
05:54 作成した解答②
06:04 エンディング(楽曲提供:兄いえてぃさん)
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#電気通信大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \displaystyle \frac{n^2k+n^3}{k^4+2n^2k^2+n^4}$
出典:2022年電気通信大学後期 入試問題
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \displaystyle \frac{n^2k+n^3}{k^4+2n^2k^2+n^4}$
出典:2022年電気通信大学後期 入試問題
投稿日:2023.04.09