大学入試問題#479「教科書で紹介されてそう」 山形大学(2016) 微積の応用① - 質問解決D.B.(データベース)

大学入試問題#479「教科書で紹介されてそう」  山形大学(2016) 微積の応用①

問題文全文(内容文):
$f(x)=\sin^2x+2\displaystyle \int_{0}^{\frac{\pi}{2}} f(t)\cos\ t\ dx$を満たす$f(x)$を求めよ。

出典:2016年山形大学 入試問題
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)=\sin^2x+2\displaystyle \int_{0}^{\frac{\pi}{2}} f(t)\cos\ t\ dx$を満たす$f(x)$を求めよ。

出典:2016年山形大学 入試問題
投稿日:2023.03.17

<関連動画>

【高校数学】毎日積分27日目【難易度:★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_1^ex(logx)^2dx$
これを解け.
この動画を見る 

福田の数学〜上智大学2023年理工学部第3問〜対数関数の積分と数学的帰納法

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#数列#数学的帰納法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $e$を自然定数の底とする。自然数$n$に対して、
$S_n$=$\displaystyle\int_1^e(\log x)^n dx$
とする。
(1)$S_1$の値を求めよ。
(2)すべての自然数$n$に対して、
$S_n$=$a_n e$+$b_n$, ただし$a_n$, $b_n$はいずれも整数
と表されることを証明せよ。
この動画を見る 

【概要欄必読】大学入試問題#172 東京都市大学 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\sqrt{ 3 }}{2}}(x+4x^3)\sqrt{ 1+4x^2 }\ dx$

出典:東京都市大学 入試問題
この動画を見る 

#会津大学 2020年 #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e} \sqrt{ x }\ log\ x\ dx$

出典:2020年会津大学
この動画を見る 

大学入試問題#98 千葉大学医学部(2018) 積分・極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#不定積分#定積分#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)
$f(x)=\displaystyle \int_{0}^{x}e^{t-x}\sin(t+x)dt$を求めよ。


(2)
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{f(x)}{x}$を求めよ。

出典:2018年千葉大学 入試問題
この動画を見る 
PAGE TOP