【高校数学】 数Ⅰ-84 三角比⑨ - 質問解決D.B.(データベース)

【高校数学】  数Ⅰ-84  三角比⑨

問題文全文(内容文):
$0° \leqq \theta \leqq 180°$とする。次の不等式を満たす
$\theta $の範囲を求めよう。

①$\sin \theta \gt \displaystyle \frac{\sqrt{ 3 }}{2}$

②$\cos \theta \lt \displaystyle \frac{1}{2}$

③$\tan \theta \geqq \sqrt{ 3 }$

④$2\sin \theta-1\leqq0$

⑤$2\cos \theta+ \sqrt{ 3 } \gt 0$

⑥$\tan \theta +1 \geqq 0$

単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$0° \leqq \theta \leqq 180°$とする。次の不等式を満たす
$\theta $の範囲を求めよう。

①$\sin \theta \gt \displaystyle \frac{\sqrt{ 3 }}{2}$

②$\cos \theta \lt \displaystyle \frac{1}{2}$

③$\tan \theta \geqq \sqrt{ 3 }$

④$2\sin \theta-1\leqq0$

⑤$2\cos \theta+ \sqrt{ 3 } \gt 0$

⑥$\tan \theta +1 \geqq 0$

投稿日:2014.10.25

<関連動画>

簡単すぎる京大の入試問題!解けますか?【数学】【京都大学】

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\triangle ABC$において、$AB=2,AC=1$とする。$\angle BAC$の二等分線と辺$BC$の交点を$D$とする。$AD=BD$となるとき、$\triangle ABC$の面積を求めよ。

京都大過去問
この動画を見る 

山梨大 2次方程式と複素数平面

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#複素数平面#2次方程式と2次不等式#複素数平面#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-2kx+k=0$は実数解なし
2つの解$\alpha,\beta$と1を複素中面で結ぶと正三角形となる。
$k$の値を求めよ

出典:2000年山梨大学 過去問
この動画を見る 

平方根の計算 工夫せよ 久留米大附設

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(\sqrt {33} + \sqrt {21})(\sqrt {77} - 7)=$

久留米大附設高等学校
この動画を見る 

ただの因数分解だよ

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
次の式は整数の範囲で因数分解できることが分かっています.
$2x^2-2519376x-3^10$
$(2^{\Box}x-3^{\Box})(2^{\Box}x+3^{\Box})
\Box$ に0以上の整数を入れなさい.
この動画を見る 

【数Ⅰ】不等式に含まれる最大の整数【端の状況をよく考えよう】

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ 不等式4x+2 \lt 3aを満たすxの最大の整数値が5であるとき,定数aの値の範囲を求めよ.$
この動画を見る 
PAGE TOP