問題文全文(内容文):
$\displaystyle \int_{0}^{\pi} \sqrt[ 3 ]{ \cos\displaystyle \frac{x}{6}+2\sin\displaystyle \frac{x}{3}-\cos\displaystyle \frac{x}{2} }\ dx$
$\displaystyle \int_{0}^{\pi} \sqrt[ 3 ]{ \cos\displaystyle \frac{x}{6}+2\sin\displaystyle \frac{x}{3}-\cos\displaystyle \frac{x}{2} }\ dx$
チャプター:
00:00 問題紹介
00:10 本編スタート
10:36 作成した解答①
10:47 作成した解答②
10:59 作成した解答③
11:10 エンディング(楽曲提供:兄いえてぃさん)
単元:
#積分とその応用#定積分#その他
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi} \sqrt[ 3 ]{ \cos\displaystyle \frac{x}{6}+2\sin\displaystyle \frac{x}{3}-\cos\displaystyle \frac{x}{2} }\ dx$
$\displaystyle \int_{0}^{\pi} \sqrt[ 3 ]{ \cos\displaystyle \frac{x}{6}+2\sin\displaystyle \frac{x}{3}-\cos\displaystyle \frac{x}{2} }\ dx$
投稿日:2022.12.25