大学入試問題#391「正面突破が王道だと思いますが、あえて」 東北学院大学(2009) #定積分 - 質問解決D.B.(データベース)

大学入試問題#391「正面突破が王道だと思いますが、あえて」 東北学院大学(2009) #定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{\pi} (\sin^3x-\cos^3x) dx$

出典:2009年東北学院大学 入試問題
チャプター:

00:00 問題紹介
00:10 本編スタート
05:35 作成した解答①
05:45 作成した解答②
05:56 エンディング(楽曲提供:兄いえてぃさん)

単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi} (\sin^3x-\cos^3x) dx$

出典:2009年東北学院大学 入試問題
投稿日:2022.12.10

<関連動画>

【数Ⅲ】【積分とその応用】定積分の種々の問題4 ※問題文は概要欄

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数$\displaystyle f(x)=\int_0^{x}\sin 2t~dt~~(0\leqq x\leqq 2\pi)$

の極値を求めよ。
この動画を見る 

大学入試問題#632「微分して積分するだけ」 埼玉大学(2017) #積分方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#埼玉大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)$:微分可能
$f(x)=x^2e^{-x}+\displaystyle \int_{0}^{x} e^{t-x}f(t)dt$を満たす$f(x)$を求めよ。

出典:2017年埼玉大学 入試問題
この動画を見る 

#8数検1級1次過去問 重積分積分順序の変更

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#積分とその応用#不定積分#定積分#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\boxed{7}$
以下を解け.

$\displaystyle \int_{0}^{3} dy \displaystyle \int_{0}^{\sqrt{\frac{y}{3}}}\ \log(x^3-3x+3)dx$
この動画を見る 

【高校数学】毎日積分51日目 実践編②回転体シリーズ~場合分け~【難易度:★★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
座標空間において,連立不等式
$x^2+y^2\leqq 1$
$|x|\leqq \sin z $
$|y|\leqq \sin z $
$0\leqq z \leqq \dfrac{\pi}{2}$
で定められる立体を$K$とする。
(1)$t$を$0\leqq t \leqq \dfrac{\pi}{2}$を満たす定数として、立体$K$を$z$軸に垂直な平面$z=t$で切ったときの断面積を$S(t)$とする。必要に応じて場合分けをして、$S(t)$を$t$の式で表せ。
(2)立体$K$のうち、2つの平面$z=0$と$z=\dfrac{\pi}{4}$ではさまれた部分の体積$V$を求めよ。
(3) 立体$K$の体積$W$を求めよ。
この動画を見る 

#電気通信大学(2014) #定積分 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} x^2(1-x)^9 \ dx$

出典:2014年電気通信大学
この動画を見る 
PAGE TOP