大学入試問題#287 同志社大学(2013) #定積分 - 質問解決D.B.(データベース)

大学入試問題#287 同志社大学(2013) #定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{6}}\cos^6\theta\ d\ \theta$

出典:2013年同志社大学 入試問題
チャプター:

00:00 問題紹介
00:85 本編スタート
04:57 作成した解答①の掲載
05:07 作成した解答②の掲載
05:18 エンディング(視聴者の兄いえてぃさんが提供してくれました。)

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#同志社大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{6}}\cos^6\theta\ d\ \theta$

出典:2013年同志社大学 入試問題
投稿日:2022.08.21

<関連動画>

大学入試問題#257 東京理科大学(2011) #極限 #区分求積法

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=1}^n\displaystyle \frac{k}{n^2}log(\displaystyle \frac{n+k}{n})$を求めよ。

出典:2011年東京理科大学 入試問題
この動画を見る 

東京水産大 微分 4次関数交点と接点 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
'83東京水産大学過去問題
$f(x)=x^4+4x^3-12x^2+8x+1$上の点A(a,f(a))における接線とf(x)の交点が点Aの両側にあるようなaの範囲
この動画を見る 

篠原京大塾:2021年(文系数学)過去問解説【篠原好】

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
2021年(文系数学)過去問解説
この動画を見る 

福田の数学〜東京大学2025文系第1問〜放物線とその法線の交点のx座標の最小値

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

$a$を正の実数とする。

座標平面において、

放物線$C:y=x^2$上の点$P(a,a^2)$に

おける$C$の接線と直交し、$P$を通る直線を$\ell$とおく。

$\ell$と$C$の交点のうち、$P$と異なる点を$Q$と置く。

(1)$Q$の$x$座標を求めよ。

$Q$における$C$の接線と直交し、$Q$を通る直線を$m$とおく。

$m$と$C$の交点のうち、$Q$と異なる点を$R$とおく。

(2)$a$がすべての正の実数を動くとき、

$R$の$x$座標の最小値を求めよ。

$2025$年東京大学文系過去問題
この動画を見る 

東京女子医大 漸化式の基本問題

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#東京女子医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=1,S_n=\displaystyle \sum_{k=1}^n a_k$
$S_{n+1}=3S_n+4n^3+1$
これの一般項aを求めよ.

東京女子医大過去問
この動画を見る 
PAGE TOP