大学入試問題#291 愛知工業大学(2012) #定積分 - 質問解決D.B.(データベース)

大学入試問題#291 愛知工業大学(2012) #定積分

問題文全文(内容文):
$\displaystyle \int_{(\frac{\pi}{2})^2}^{\pi^2}\displaystyle \frac{\cos\sqrt{ x }}{\sqrt{ x }}dx$

出典:2012年愛知工業大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#愛知工業大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{(\frac{\pi}{2})^2}^{\pi^2}\displaystyle \frac{\cos\sqrt{ x }}{\sqrt{ x }}dx$

出典:2012年愛知工業大学 入試問題
投稿日:2022.08.25

<関連動画>

2022北海道大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ f(x)=x^3-(2k-1)x^2+(k^2-k+1)x-$
$k+1 $
(1)$ f(k-1)$の値を求めよ.
(2)$ \vert k \vert \lt 2$のとき,不等式 $ f(n)\geqq 0$を解け.

2022北海道大過去問
この動画を見る 

福田の数学〜千葉大学2024年文系第1問〜三角形の成立条件と対数

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#三角形の辺の比(内分・外分・二等分線)#指数関数と対数関数#対数関数#千葉大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(1) 3辺の長さが$2,5,a$である三角形が存在するような、$a$の値の範囲を求めよ。
(2) 3辺の長さが$\log_{10}(5x),\log_{10}(x+10),\log_{10}3$である三角形が存在するような、$x$の値の範囲を求めよ。
(3) ある二等辺三角形の3辺の長さが$\log_{10}(5x),\log_{10}(x+10),\log_{10}3$であるとき、$x$の値を求めよ。
この動画を見る 

【高校数学】金沢大学2024年の積分の問題をその場で解説しながら解いてみた!毎日積分85日目~47都道府県制覇への道~【㉘石川】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#金沢大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【金沢大学 2024】
次の問いに答えよ。
(1) 関数$f(x)=e^{-x}sinx$と$g(x)=e^{-x}cosx$の導関数$f'(x),g'(x)$を求めよ。
(2) 整数$k$に対し、定積分$\displaystyle \int_{kπ}^{(k+1)π}e^{-x}sinxdx$を求めよ。
(3) 極限$\displaystyle \lim_{n\to \infty}\int_0^{nπ}e^{-x}|sinx|dx$を求めよ。
この動画を見る 

福田の数学〜中央大学2023年経済学部第1問(2)〜同じものを含む順列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)E, C, O, N, O, M, I, C, Sの9文字を並べ替えて作ることのできる文字列の個数はC, O, M, M, E, R, C, Eの8文字を並べ替えて作ることのできる文字列の個数と比べて何倍あるか。
この動画を見る 

横市(医)弘前大 因数分解・微分 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#微分とその応用#微分法#色々な関数の導関数#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学#数Ⅲ#横浜市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
横浜市立大学過去問題
因数分解せよ
$a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2$

弘前大学過去問題
関数y=f(x)において
$\displaystyle\lim_{x \to a}\frac{x^2f(x)-a^2f(a)}{x^2-a^2}$をa,f(a),f'(a)を用いて表せ。
この動画を見る 
PAGE TOP