大学入試問題#271 大阪教育大学2018 #区分求積法 #ウォリス積分 - 質問解決D.B.(データベース)

大学入試問題#271 大阪教育大学2018 #区分求積法 #ウォリス積分

問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty }\displaystyle \frac{1}{n^4}\displaystyle \sum_{k=0}^{n-1}k^2 \sqrt{ n^2-k^2 }$を求めよ。

出典:2018年大阪教育大学 入試問題
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/single.php on line 102

Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/single.php on line 103
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty }\displaystyle \frac{1}{n^4}\displaystyle \sum_{k=0}^{n-1}k^2 \sqrt{ n^2-k^2 }$を求めよ。

出典:2018年大阪教育大学 入試問題
投稿日:2022.08.04

<関連動画>

PAGE TOP