数学「大学入試良問集」【14−9ベクトルと反転】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【14−9ベクトルと反転】を宇宙一わかりやすく

問題文全文(内容文):
$xy$平面において、原点$O$を通る半径$r(r \gt 0)$の円を$C$とし、その中心を$A$とする。
$O$を除く$C$上の点$P$に対し、次の2つの条件$(a),(b)$で定まる点$Q$を考える。
(a)$\overrightarrow{ OP }$と$\overrightarrow{ OQ }$の向きが同じ。
(b)$|\overrightarrow{ OP }||\overrightarrow{ OQ }|=1$

以下の問いに答えよ。
(1)
点$P$が$O$を除く$C$上を動くとき、点$Q$は$\overrightarrow{ OA }$に直交する直線状を動くことを示せ。

(2)
(1)の直線を$l$とする。
$l$が$C$と2点で交わるとき、$r$のとり得る値の範囲を求めよ。
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$xy$平面において、原点$O$を通る半径$r(r \gt 0)$の円を$C$とし、その中心を$A$とする。
$O$を除く$C$上の点$P$に対し、次の2つの条件$(a),(b)$で定まる点$Q$を考える。
(a)$\overrightarrow{ OP }$と$\overrightarrow{ OQ }$の向きが同じ。
(b)$|\overrightarrow{ OP }||\overrightarrow{ OQ }|=1$

以下の問いに答えよ。
(1)
点$P$が$O$を除く$C$上を動くとき、点$Q$は$\overrightarrow{ OA }$に直交する直線状を動くことを示せ。

(2)
(1)の直線を$l$とする。
$l$が$C$と2点で交わるとき、$r$のとり得る値の範囲を求めよ。
投稿日:2021.10.19

<関連動画>

福田の数学〜立教大学2022年理学部第1問(3)〜垂線の足の位置ベクトル

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#平面上のベクトル#三角形の辺の比(内分・外分・二等分線)#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
三角形ABCにおいて、$AB=5,\ AC=6$、角Aの大きさは$\frac{\pi}{3}$であるとする。
Aから辺BCに垂線AHを下ろす。このとき$BH:CH=\boxed{ウ}:\boxed{エ}$である。

2022立教大学理学部過去問
この動画を見る 

福田の数学〜北海道大学2024年理系第4問〜三角形の内心の位置ベクトル

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{4}}$ 三角形OABが、|$\overrightarrow{OA}$|=3, |$\overrightarrow{AB}$|=5, $\overrightarrow{OA}・\overrightarrow{OB}$=10 を満たしているとする。
三角形OABの内接円の中心をIとし、この内接円と辺OAの接点をHとする。
(1)辺OBの長さを求めよ。
(2)$\overrightarrow{OI}$を$\overrightarrow{OA}$と$\overrightarrow{OB}$を用いて表せ。
(3)$\overrightarrow{HI}$を$\overrightarrow{OA}$と$\overrightarrow{OB}$を用いて表せ。
この動画を見る 

【数C】単位ベクトルを成分で表そう!

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #アドバンスプラス#アドバンスプラス数Ⅱ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
アドバンスプラス数学B
問題616
vec(a)=(-3,4)と同じ向きの単位ベクトルvec(e)を求めよ。
この動画を見る 

【高校数学】数Ⅲ-46 極座標と極方程式③

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$O$を極とする極座標において、
2点$A\left(2,\dfrac{\pi}{6}\right),B\left(4,\dfrac{5}{6}\pi\right)$がある。

①線分$AB$の長さを求めよ。

②$\triangle OAB$の面積を求めよ。
この動画を見る 

福田の数学〜相反方程式の扱い方を知っていますか〜明治大学2023年理工学部第1問(2)〜相反方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (2)(a)$t$を実数とする。$x$についての方程式$x$+$\frac{1}{x}$=$t$ が実数解をもつための必要十分条件は$t$≦$-\boxed{\ \ カ\ \ }$または$t$≧$\boxed{\ \ キ\ \ }$ である。
(b)$k$を実数と定数とし、$f(x)$=$7x^4$+$2x^3$+$kx^2$+$2x$+7 とする。
$x$=$a$が$f(x)$=0 の解であるとき、$t$=$a$+$\frac{1}{a}$ とおくと
$\boxed{\ \ ク\ \ }t^2$+$\boxed{\ \ ケ\ \ }t$+$(k-\boxed{\ \ コサ\ \ })$=0
が成り立つ。方程式$f(x)$=0 の異なる実数解の個数が3個となるような$k$の値は$k$=$-\boxed{\ \ シス\ \ }$ である。
この動画を見る 
PAGE TOP