数学「大学入試良問集」【19−15 ガウス記号と極限・区分求積法】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【19−15 ガウス記号と極限・区分求積法】を宇宙一わかりやすく

問題文全文(内容文):
実数$x$に対して、$x$を越えない最大の整数を$\lbrack x \rbrack$で表す。
$n$を正の整数とし、$a_n=\displaystyle \sum_{k=1}^n\displaystyle \frac{\lbrack \sqrt{ 2n^2-k^2 } \rbrack}{n^2}$とおく。
このとき、$\displaystyle \lim_{ n \to \infty }a_n$を求めよ。
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
実数$x$に対して、$x$を越えない最大の整数を$\lbrack x \rbrack$で表す。
$n$を正の整数とし、$a_n=\displaystyle \sum_{k=1}^n\displaystyle \frac{\lbrack \sqrt{ 2n^2-k^2 } \rbrack}{n^2}$とおく。
このとき、$\displaystyle \lim_{ n \to \infty }a_n$を求めよ。
投稿日:2021.09.15

<関連動画>

#千葉大学2023#定積分#ますただ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#千葉大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
以下の定積分を解け。
$\displaystyle \int_{0}^{\frac{\pi}{6}} \displaystyle \frac{1}{\cos x} dx$

出典:2023年千葉大学
この動画を見る 

福田の数学〜早稲田大学2021年理工学部第3問〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#積分とその応用#複素数平面#定積分#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$ 複素数$\alpha=2+i,$ $\beta=-\displaystyle \frac{1}{2}+i$に対応する複素数平面上の点を$A(\alpha),\ B(\beta)$とする。
このとき、以下の問いに答えよ。
(1)複素数平面上の点$C(\alpha^2),\ D(\beta^2)$と原点$O$の3点は一直線上にあることを示せ。

(2)点$P(z)$が直線$AB$上を動くとき、$z^2$の実部を$x$、虚部を$y$として、点$Q(z^2)$の軌跡
を$x,y$の方程式で表せ。

(3)点$P(z)$が三角形$OAB$の周および内部にあるとき、点$Q(z^2)$全体のなす図形をK
とする。$K$を複素数平面上に図示せよ。

(4)(3)の図形$K$の面積を求めよ。

2021早稲田大学理工学部過去問
この動画を見る 

国際数学オリンピック 積和

アイキャッチ画像
単元: #積分とその応用#不定積分#定積分#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\cos\dfrac{\pi}{7}-\cos\dfrac{2\pi}{7}+\cos\dfrac{3\pi}{7}=\dfrac{1}{2}$を示せ.

国際数学オリンピック
この動画を見る 

福田の数学〜上智大学2022年理工学部第1問(3)〜定積分の計算

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}\ (3)\int_0^{\frac{2}{3}\pi}x\sin2xdx=\frac{\pi}{\boxed{イ}}+$
$\frac{\boxed{ウ}}{\boxed{エ}}\sqrt{\boxed{オ}}$である。

2022上智大理工学部過去問
この動画を見る 

【数Ⅲ-156】定積分の部分積分法②

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分の部分積分法➁)
Q次の定積分の値を求めよ。

①$\int_1^ex^3 \log x \ dx$

➁$\int_0^1(1-x)e^xdx$

③$\int_0^\frac{\pi}{4}(x-2)\cos x\ dx$
この動画を見る 
PAGE TOP