数学「大学入試良問集」【19−5定積分で表された関数】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【19−5定積分で表された関数】を宇宙一わかりやすく

問題文全文(内容文):
(1)
次の定積分の値を求めよ。
 (ⅰ)$\displaystyle \int_{0}^{\pi}\sin\ x\ dx$
 (ⅱ)$\displaystyle \int_{0}^{\pi}e^{2x}\sin\ x\ dx$

(2)
次の等式をみたす$f(x)$を求めよ。
$f(x)=e^{2x}+\displaystyle \int_{0}^{\pi}f(t)\sin\ t\ dt$
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#神戸商船大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
(1)
次の定積分の値を求めよ。
 (ⅰ)$\displaystyle \int_{0}^{\pi}\sin\ x\ dx$
 (ⅱ)$\displaystyle \int_{0}^{\pi}e^{2x}\sin\ x\ dx$

(2)
次の等式をみたす$f(x)$を求めよ。
$f(x)=e^{2x}+\displaystyle \int_{0}^{\pi}f(t)\sin\ t\ dt$
投稿日:2021.08.13

<関連動画>

大学入試問題#559「解法色々」 筑波大学(2020) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} \sin^2x\ \cos2x\ dx$

出典:2020年筑波大学 入試問題
この動画を見る 

【高校数学】毎日積分36日目【バウムクーヘン積分って実際どれくらい便利なの!?】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
バウムクーヘン積分について解説!まずは前回の動画をチェック!
この動画を見る 

大学入試問題#545「作成時間がありませんでした」 会津大学(2023) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} (2x+1)log(x+1)\ dx$

出典:2023年会津大学 入試問題
この動画を見る 

福田の数学〜東京慈恵会医科大学2023年医学部第2問〜定積分で表された関数と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ nを自然数、aを正の定数とする。関数f(x)は等式
$f(x)=x+\displaystyle\frac{1}{n}\int_0^xf(t)dt$
を満たし、関数g(x)は$g(x)$=$ae^{-\frac{x}{n}}+a$とする。2つの曲線y=f(x)とy=g(x)はある1点を共有し、その点における2つの接線が直交するとき、次の問いに答えよ。ただし、eは自然対数の底とする。
(1)h(x)=$e^{-\frac{x}{n}}f(x)$とおくとき、導関数h'(x)とh(x)を求めよ。
(2)aをnを用いて表せ。
(3)2つの曲線y=f(x), y=g(x)とy軸で囲まれた部分の面積を$S_n$とするとき、
極限値$\displaystyle\lim_{n \to \infty}\frac{S_1+S_2+\cdots+S_n}{n^3}$ を求めよ。

2023東京慈恵会医科大学医学部過去問
この動画を見る 

大学入試問題#150 京都大学(1991) 積分の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)
$a$実数
$e^x \geqq e^a+(x-1)e^a$を示せ

(2)
$\displaystyle \int_{0}^{1}e^{\sin\ \pi\ x}dx \geqq e^{\frac{2}{x}}$を示せ

出典:1991年京都大学 入試問題
この動画を見る 
PAGE TOP