問題文全文(内容文):
正の数$x$に対して定義された次の関数$f(x)$を考える。
$f(x)=\displaystyle \lim_{ n \to \infty }\displaystyle \frac{4x^{n+1}+ax^n+log\ x+1}{x^{n+2}+x^n+1}$
ここで、$a$は定数である。
このとき、次の各問いに答えよ。
(1)
極限計算により関数$f(x)$を求めると
$0 \lt x \lt 1$のとき$f(x)=\fcolorbox{black}{ #fffff }{ ア },f(1)=\fcolorbox{black}{ #fffff }{ イ },x \gt 1$のとき$f(x)=\fcolorbox{black}{ #fffff }{ ウ }$。
(2)
関数$f(x)$が$x=1$で連続になるときの$a$の値を求めよ。
以下、$a$はこの値とする。
(3)
関数$f(x)$の増減、極値および$f(x)=0$をみたす$x$の値を調べて、関数$f(x)$のグラフ$C$の概形を描け。
(4)
関数$f(x)$のグラフ$C$と直線$x=\sqrt{ 3 }$および$x$軸で囲まれる部分の面積を求めよ。
正の数$x$に対して定義された次の関数$f(x)$を考える。
$f(x)=\displaystyle \lim_{ n \to \infty }\displaystyle \frac{4x^{n+1}+ax^n+log\ x+1}{x^{n+2}+x^n+1}$
ここで、$a$は定数である。
このとき、次の各問いに答えよ。
(1)
極限計算により関数$f(x)$を求めると
$0 \lt x \lt 1$のとき$f(x)=\fcolorbox{black}{ #fffff }{ ア },f(1)=\fcolorbox{black}{ #fffff }{ イ },x \gt 1$のとき$f(x)=\fcolorbox{black}{ #fffff }{ ウ }$。
(2)
関数$f(x)$が$x=1$で連続になるときの$a$の値を求めよ。
以下、$a$はこの値とする。
(3)
関数$f(x)$の増減、極値および$f(x)=0$をみたす$x$の値を調べて、関数$f(x)$のグラフ$C$の概形を描け。
(4)
関数$f(x)$のグラフ$C$と直線$x=\sqrt{ 3 }$および$x$軸で囲まれる部分の面積を求めよ。
単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
正の数$x$に対して定義された次の関数$f(x)$を考える。
$f(x)=\displaystyle \lim_{ n \to \infty }\displaystyle \frac{4x^{n+1}+ax^n+log\ x+1}{x^{n+2}+x^n+1}$
ここで、$a$は定数である。
このとき、次の各問いに答えよ。
(1)
極限計算により関数$f(x)$を求めると
$0 \lt x \lt 1$のとき$f(x)=\fcolorbox{black}{ #fffff }{ ア },f(1)=\fcolorbox{black}{ #fffff }{ イ },x \gt 1$のとき$f(x)=\fcolorbox{black}{ #fffff }{ ウ }$。
(2)
関数$f(x)$が$x=1$で連続になるときの$a$の値を求めよ。
以下、$a$はこの値とする。
(3)
関数$f(x)$の増減、極値および$f(x)=0$をみたす$x$の値を調べて、関数$f(x)$のグラフ$C$の概形を描け。
(4)
関数$f(x)$のグラフ$C$と直線$x=\sqrt{ 3 }$および$x$軸で囲まれる部分の面積を求めよ。
正の数$x$に対して定義された次の関数$f(x)$を考える。
$f(x)=\displaystyle \lim_{ n \to \infty }\displaystyle \frac{4x^{n+1}+ax^n+log\ x+1}{x^{n+2}+x^n+1}$
ここで、$a$は定数である。
このとき、次の各問いに答えよ。
(1)
極限計算により関数$f(x)$を求めると
$0 \lt x \lt 1$のとき$f(x)=\fcolorbox{black}{ #fffff }{ ア },f(1)=\fcolorbox{black}{ #fffff }{ イ },x \gt 1$のとき$f(x)=\fcolorbox{black}{ #fffff }{ ウ }$。
(2)
関数$f(x)$が$x=1$で連続になるときの$a$の値を求めよ。
以下、$a$はこの値とする。
(3)
関数$f(x)$の増減、極値および$f(x)=0$をみたす$x$の値を調べて、関数$f(x)$のグラフ$C$の概形を描け。
(4)
関数$f(x)$のグラフ$C$と直線$x=\sqrt{ 3 }$および$x$軸で囲まれる部分の面積を求めよ。
投稿日:2021.08.29