数学「大学入試良問集」【18−5 極大値をもつ条件】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【18−5 極大値をもつ条件】を宇宙一わかりやすく

問題文全文(内容文):
関数$f(x)=\displaystyle \frac{a-\cos\ x}{a+\sin\ x}$が、$0 \lt x \lt \displaystyle \frac{\pi}{2}$の範囲で極大値をもつように、定数$a$の値の範囲を求めよ。
また、その極大値が2となるときの$a$の値を求めよ。
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#福島県立医科大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
関数$f(x)=\displaystyle \frac{a-\cos\ x}{a+\sin\ x}$が、$0 \lt x \lt \displaystyle \frac{\pi}{2}$の範囲で極大値をもつように、定数$a$の値の範囲を求めよ。
また、その極大値が2となるときの$a$の値を求めよ。
投稿日:2021.07.04

<関連動画>

早稲田大(国際教養)微分

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3-3mx+m-3=0$が3個の異なる実数解$\alpha ,\beta,\gamma$をもつ$(\alpha \lt \beta \lt \gamma)m,\alpha,\beta,\gamma$の範囲を求めよ

出典:2018年早稲田大学 過去問
この動画を見る 

福田の数学〜複数の絶対値に対応できるか〜東京大学2018年文系第1問(1)〜絶対値を含む関数の最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
座標平面上に放物線 C を$y=x^2-3x+4$ で定め、領域Dを$y \geqq x^2-3x+4$で定める。原点を通る 2 直線l, m は C に接する。
(1) 放物線 C 上を動く点 A と直線l, m の距離をそれぞれL,M とする。$\sqrt{ \mathstrut L } + \sqrt{ \mathstrut M }$が最小値をとるときの点 A の座標を求めよ。

2018東京大学文過去問
この動画を見る 

【数Ⅲ】微分法の応用:接線と法線 曲線 y=√x²+1 に点(1,0)から引いた接線と法線の方程式を求めよう。

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
曲線 $y=\sqrt{x²+1}$ に点($1,0$)から引いた接線と法線の方程式を求めよう。
この動画を見る 

微分方程式⑦-2【2階微分方程式の一般解を求める】(高専数学、数検1級)

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)$\dfrac{d^2x}{dt^2}-3\dfrac{dx}{dt}+x=t^2-2t$
の一般項を求めよ.
(2)$\dfrac{d^2x}{dt^2}+2\dfrac{dx}{dt}-8x=4t-3$
の一般項を求めよ.
この動画を見る 

福田の数学〜北海道大学2025文系第1問〜関数の増減と接線の方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

関数$f(x)=x^3-6x^2-15x+30$について考える。

$y=f(x)$のグラフを$C$とおく。

(1)$f(x)$が極大値、

極小値をとるような$x$をそれぞれ求め、

$f(x)$の極大値、極小値を求めよ。

(2)$C$上の点$(-3,-6)$を通り、

$C$に接する直線の方程式をすべて求めよ。

$2025$年北海道大学文系過去問題
この動画を見る 
PAGE TOP