数学「大学入試良問集」【18−5 極大値をもつ条件】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【18−5 極大値をもつ条件】を宇宙一わかりやすく

問題文全文(内容文):
関数$f(x)=\displaystyle \frac{a-\cos\ x}{a+\sin\ x}$が、$0 \lt x \lt \displaystyle \frac{\pi}{2}$の範囲で極大値をもつように、定数$a$の値の範囲を求めよ。
また、その極大値が2となるときの$a$の値を求めよ。
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#福島県立医科大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
関数$f(x)=\displaystyle \frac{a-\cos\ x}{a+\sin\ x}$が、$0 \lt x \lt \displaystyle \frac{\pi}{2}$の範囲で極大値をもつように、定数$a$の値の範囲を求めよ。
また、その極大値が2となるときの$a$の値を求めよ。
投稿日:2021.07.04

<関連動画>

立教大 関数の最小値

アイキャッチ画像
単元: #微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x\gt 0$とする.
$\left(x+\dfrac{1}{x}\right)\left(x+\dfrac{2}{x}\right)$の最小値を求めよ.

2021立教大過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年商学部第1問(2)〜三角不等式の一般解

アイキャッチ画像
単元: #大学入試過去問(数学)#三角関数#三角関数とグラフ#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (2)xを変数とする2次方程式\ x^2+(2\sqrt2\cos\theta)x+\sqrt2\sin\theta=0\ が\\
異なる2つの実数解をもつような実数\thetaの範囲は\boxed{\ \ ア\ \ }\ である。
\end{eqnarray}

2022慶應義塾大学商学部過去問
この動画を見る 

福田のわかった数学〜高校3年生理系067〜微分(12)微分の計算

アイキャッチ画像
単元: #微分とその応用#微分法#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 微分(12) 微分計算\\
\\
y=\sqrt[3]{\frac{2x+1}{x(x-2)^2}}\\
\\
を微分せよ。
\end{eqnarray}
この動画を見る 

福田の入試問題解説〜東京大学2022年文系第2問〜3次関数の法施線とグラフとの交点

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{2}}}\ y=x^3-xにより定まる座標平面上の曲線をCとする。C上の点P(\alpha,\alpha^3-\alpha)を通り、\\
点PにおけるCの接線と垂直に交わる直線をlとする。Cとlは相異なる3点で交わるとする。\\
(1)\alphaのとりうる値の範囲を求めよ。\\
(2)Cとlの点P以外の2つの交点のx座標を\beta,\gammaとする。ただし\beta \lt \gammaとする。\\
\beta^2+\beta\gamma+\gamma^2-1≠0 となることを示せ。\\
(3)(2)の\beta,\gammaを用いて、\\
u=4\alpha^3+\frac{1}{\beta^2+\beta\gamma+\gamma^2-1}\\
と定める。このとき、uの取りうる値の範囲を求めよ。
\end{eqnarray}

2022東京大学文系過去問
この動画を見る 

福田の数学〜上智大学2021年TEAP利用理系第4問〜楕円と弦の中点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#軌跡と領域#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} Oを原点とする座標平面において、楕円D:\frac{x^2}{6}+\frac{y^2}{2}=1 上に異なる2点P_1,P_2\\
がある。P_1における接線l_1とP_2における接線l_2の交点をQ(a,\ b)とし、線分P_1P_2の\\
中点をRとする。\\
\\
(1)P_1の座標を(x_1,\ y_1)とするとき、l_1の方程式はx_1x+\boxed{\ \ チ\ \ }\ y_1y+\boxed{\ \ ツ\ \ }=0\\
と表される。\\
\\
(2)直線P_1P_2の方程式は、a,bを用いてax+\boxed{\ \ テ\ \ }\ by+\boxed{\ \ ト\ \ }=0と表される。\\
\\
(3)3点O,R,Qは一直線上にあって\overrightarrow{ OR }=\frac{\boxed{\ \ ナ\ \ }}{a^2+\boxed{\ \ ニ\ \ }\ b^2}\overrightarrow{ OQ }が成り立つ。\\
\\
(4)l_1とl_2のどちらもy軸と平行ではないとする。このとき、l_1とl_2の傾きは\\
tの方程式(a^2+\boxed{\ \ ヌ\ \ })t^2+\boxed{\ \ ネ\ \ }abt+(b^2+\boxed{\ \ ノ\ \ })=0 の解である。\\
\\
(5)l_1とl_2が直交しながらP_1,P_2が動くとする。\\
(\textrm{i})Qの軌跡の方程式を求めよ。   (\textrm{ii})Rのy座標の最大値を求めよ。\\
(\textrm{iii})Rの軌跡の概形を描け。
\end{eqnarray}

2021上智大学理系過去問
この動画を見る 
PAGE TOP