数学「大学入試良問集」【17−7 極限値が収束する条件】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【17−7 極限値が収束する条件】を宇宙一わかりやすく

問題文全文(内容文):
$\displaystyle \lim_{ x \to \frac{\pi}{3} }\displaystyle \frac{a\ \sin\ x+b\ \cos\ x}{x-\frac{\pi}{3}}=5(a,b$は定数$)$のとき、$a$と$b$の値を求めよ。
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#愛知工業大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\displaystyle \lim_{ x \to \frac{\pi}{3} }\displaystyle \frac{a\ \sin\ x+b\ \cos\ x}{x-\frac{\pi}{3}}=5(a,b$は定数$)$のとき、$a$と$b$の値を求めよ。
投稿日:2021.06.24

<関連動画>

東大(文)三次方程式と合成関数 実数解の個数 高校数学 Mathematics Japanese university entrance exam Tokyo University

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
2004東京大学過去問題
$f(x)=x^3-3x$
$g(x)= \{ f(x) \}^3-3f(x)$
$h(x)= \{ g(x) \}^3-3g(x)$
(1)f(x)=a (実数)を満たす実数xの個数
(2)g(x)=0を満たす実数xの個数
(3)h(x)=0を満たす実数xの個数
この動画を見る 

数学「大学入試良問集」【17−6 直線上の点の極限】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$f(x)=-\displaystyle \frac{1}{2}x+3$とする。
$x_1=1$とおいて数列$x_n=f(x_{n-1})$ $n=2,3,・・・$をつくり、平面座標上に点$P_n(x_n,f(x_n))$をとる。
このとき、次の各問いに答えよ。
(1)
数列$\{x_n\}$の一般項$x_n$を求めよ。

(2)
動点$P$が点$P_1$を出発して、$P_2,P_3,・・・,P_n,・・・$と進むとき、動点$P$はどのような点に近づくか。
その座標を求めよ。

(3)
線分$P_nP_{n+1}$の長さを$l_n$ $n=1,2,3,・・・$とする。
$L=\displaystyle \sum_{n=1}^n l_n$を求めよ。
この動画を見る 

【高校数学】数Ⅲ-65 数列の極限①

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の数列の収束、発散を調べよ。

①$-3,-1,1,・・・2n-5,・・・$

②$1,\dfrac{3}{2},\dfrac{5}{3},・・・,2-\dfrac{1}{n},・・・$

③$-1,-4,-9,・・・,-n^2,・・・$

④$-4,16,-64,・・・,(-4)^n,・・・$
この動画を見る 

16東京都教員採用試験(数学:1-7 極限値)

アイキャッチ画像
単元: #関数と極限#関数の極限#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣-(7)
$\displaystyle \lim_{ n \to -0 } (\sqrt{\frac{1}{x^2}+\frac{3}{x}} - \sqrt{\frac{1}{x^2}-\frac{2}{x}})$
この動画を見る 

福田のわかった数学〜高校3年生理系018〜極限(18)関数の極限、無理関数の極限(3)

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 無理関数の極限(3)
$\displaystyle \lim_{x \to \infty}(\sqrt{x^2+x+1}-$$\sqrt{x^2-x+1})$ を求めよ。
この動画を見る 
PAGE TOP