数学「大学入試良問集」【13−4 漸化式(逆数型)】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【13−4 漸化式(逆数型)】を宇宙一わかりやすく

問題文全文(内容文):
$a_1=1,a_{n+1}=\displaystyle \frac{a_n}{4a_n+1}(n=1,2,・・・)$で定まる数列$\{a_n\}$に関して、次の各問に答えよ。
(1)
$\displaystyle \frac{1}{a_n}$を$n$の式で表せ。

(2)
$\displaystyle \sum_{k=1}^n\left[ \dfrac{ 12 }{ a_k-a_{k+1} }+9 \right]$を$n$の式で表せ。
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a_1=1,a_{n+1}=\displaystyle \frac{a_n}{4a_n+1}(n=1,2,・・・)$で定まる数列$\{a_n\}$に関して、次の各問に答えよ。
(1)
$\displaystyle \frac{1}{a_n}$を$n$の式で表せ。

(2)
$\displaystyle \sum_{k=1}^n\left[ \dfrac{ 12 }{ a_k-a_{k+1} }+9 \right]$を$n$の式で表せ。
投稿日:2021.05.30

<関連動画>

【数B】確率漸化式:ある地方では雨が降った日の翌日に雨が降る確率は60%、雨が降らなかった日の翌日に雨が降る確率は30%であるという。今日雨が降っている時、n日後も雨が降る確率P[n]を求めよ。

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
ある地方では雨が降った日の翌日に雨が降る確率は60%、雨が降らなかった日の翌日に雨が降る確率は30%であるという。今日雨が降っている時、n日後も雨が降る確率$P_n$を求めよ。
この動画を見る 

福田の数学〜中央大学2021年経済学部第1問(5)〜漸化式の解法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(5)次の条件によって定められる数列$\left\{a_n\right\}$の一般項を求めよ。
$a_1=-1, a_{n+1}=a_n+2・3^{n-1}  (n=1,2,3,\ldots)$

2021中央大学経済学部過去問
この動画を見る 

200! 12進法で表すと末尾に0何個?

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
十進法の$200!$を12進法で表すと末尾に$0$が何個並ぶか.
この動画を見る 

福田の数学〜慶應義塾大学2021年経済学部第3問〜数列の部分和と一般項の関係

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$ 数列$\left\{a_n\right\}$に対して、
$S_n=\sum_{k=1}^na_k (n=1,2,3,\ldots)$
とおく。$\left\{a_n\right\}$は、$a_2=1,a_6=2$および
(*)$S_n=\frac{(n-2)(n+1)^2}{4}a_{n+1} (n=1,2,3,\ldots)$
を満たすとする。

(1)$a_1=-\boxed{\ \ ア\ \ }$である。(*)で$n=4,5$とすると、$a_3+a_4$と$a_5$の関係が2通り定まり、
$a_5=\boxed{\ \ イ\ \ }$と求まる。さらに(*)で$n=3$として、$a_3=\boxed{\ \ ウエ\ \ },a_4=\boxed{\ \ オカ\ \ }$と求まる。

(2)$n \geqq 2$に対して$a_n=S_n-S_{n-1}$であるから(*)とあわせて
$(n-\boxed{\ \ キ\ \ })(n+\boxed{\ \ ク\ \ })^2a_{n+1}=(n^3-\boxed{\ \ ケ\ \ }n^2+\boxed{\ \ コ\ \ })a_n (n=2,3,\ldots)$

ゆえに、$n \geqq 3$ならば$(n+\boxed{\ \ サ\ \ })a_{n+1}=(n-\boxed{\ \ シ\ \ })a_n$となる。そこで、$n \geqq 3$に
対して$b_n=(n-r)(n-s)(n-t)a_n$とおくと、漸化式
$b_{n+1}=b_n (nz-3,4,5,\ldots)$
が成り立つ。ただしここに、$r \lt s \lt t$として$r=\boxed{\ \ ス\ \ },s=\boxed{\ \ セ\ \ },t=\boxed{\ \ ソ\ \ }$である。
したがって、$n \geqq 4$に対して
$a_n=\frac{\boxed{\ \ ソ\ \ }a_4}{(n-r)(n-s)(n-t)}$
となる。この式は$n=3$の時も成立する。

(3)$n \geqq 2$に対して
$S_n=\frac{\boxed{\ \ チツ\ \ }(n+\boxed{\ \ テ\ \ })(n-\boxed{\ \ ト\ \ })}{n(n-\boxed{\ \ ナ\ \ })}$
であるから、$S_n \geqq 59$となる最小の$n$は$n=\boxed{\ \ ニヌ\ \ }$である。

2021慶應義塾大学経済学部過去問
この動画を見る 

熊本大(理)漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#熊本大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
一般項を求めよ
$a_1=\displaystyle \frac{1}{8}$

$(4n^2-1)(a_n-a_{n+1})=8(n^2-1)a_na_{n+1}$

熊本大学理学部過去問
この動画を見る 
PAGE TOP