【高校数学】 数Ⅱ-7 整式の割り算③ - 質問解決D.B.(データベース)

【高校数学】  数Ⅱ-7  整式の割り算③

問題文全文(内容文):
①$x^2-2x-1$で割ると、商が$2x-3$、余りが$-2x$になる整式は?

②$x^4-3x^3+2x^2-1$で割ると、商が$x^2+1$、余りが$3x-2$になる整式は?

③$2x^3+ax+10$で割ったときの余りが$-14$であるとき、定数$a$の値は?
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$x^2-2x-1$で割ると、商が$2x-3$、余りが$-2x$になる整式は?

②$x^4-3x^3+2x^2-1$で割ると、商が$x^2+1$、余りが$3x-2$になる整式は?

③$2x^3+ax+10$で割ったときの余りが$-14$であるとき、定数$a$の値は?
投稿日:2015.04.13

<関連動画>

式の値

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x=\dfrac{1+\sqrt5}{2}$
$x^{12}$の値を求めよ.
この動画を見る 

早稲田(政経)対数不等式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a \gt 0,a \neq 1$ 不等式を解け
$log_a(x+2) \geqq log_{a^2}(3x+16)$

出典:2003年早稲田大学 政治経済学部 過去問
この動画を見る 

【数Ⅱ】【式と証明】等式の証明2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\dfrac {y+z}{b-c}=\dfrac{z+x}{c-a}=\dfrac{x+y}{a-b}$ のとき、
$x+y+z=0$ であることを証明せよ。
この動画を見る 

福田のわかった数学〜高校2年生065〜三角関数(4)三角不等式の基礎

アイキャッチ画像
単元: #数Ⅱ#式と証明#三角関数#恒等式・等式・不等式の証明#三角関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(4) 三角不等式の基礎
(1)$\sin\theta \gt -\frac{1}{2}$ (2)$\cos\theta \leqq \frac{\sqrt3}{2}$ (3)$\tan\theta \gt -1$
の解を(ア)$0 \leqq \theta \lt 2\pi$ (イ)$-\pi \leqq \theta \lt \pi$
(ウ)一般解 としてそれぞれ求めよ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題091〜大阪大学2018年度理系第1問〜不等式の証明と関数の値域

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 次の問に答えよ。
(1)x>0の範囲で不等式
x-$\frac{x^2}{2}$<$\log(1+x)$<$\frac{x}{\sqrt{1+x}}$
が成り立つことを示せ。
(2)xがx>0の範囲を動くとき、
y=$\frac{1}{\log(1+x)}$-$\frac{1}{x}$
のとりうる値の範囲を求めよ。

2018大阪大学理系過去問
この動画を見る 
PAGE TOP