問題文全文(内容文):
$a$を正の実数とする。
2次関数$f(x)=ax^2-2(a+1)x+1$に対して、次の問いに答えよ。
(1)関数$y=f(x)$のグラフの頂点の座標を求めよ。
(2)$0 \leqq x \leqq 2$の範囲で$y=f(x)$の最大値と最小値を求めよ。
$a$を正の実数とする。
2次関数$f(x)=ax^2-2(a+1)x+1$に対して、次の問いに答えよ。
(1)関数$y=f(x)$のグラフの頂点の座標を求めよ。
(2)$0 \leqq x \leqq 2$の範囲で$y=f(x)$の最大値と最小値を求めよ。
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a$を正の実数とする。
2次関数$f(x)=ax^2-2(a+1)x+1$に対して、次の問いに答えよ。
(1)関数$y=f(x)$のグラフの頂点の座標を求めよ。
(2)$0 \leqq x \leqq 2$の範囲で$y=f(x)$の最大値と最小値を求めよ。
$a$を正の実数とする。
2次関数$f(x)=ax^2-2(a+1)x+1$に対して、次の問いに答えよ。
(1)関数$y=f(x)$のグラフの頂点の座標を求めよ。
(2)$0 \leqq x \leqq 2$の範囲で$y=f(x)$の最大値と最小値を求めよ。
投稿日:2021.04.29