数学「大学入試良問集」【9−1 指数関数と解の個数】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【9−1 指数関数と解の個数】を宇宙一わかりやすく

問題文全文(内容文):
実数$x$に対して、$t=2^x+2^{-x},y=4^x-6・2^x-6・2^{-x}+4^{-x}$とおく。
次の問いに答えよ。
(1)$x$が実数全体を動くとき、$t$の最小値を求めよ。
(2)$y$を$t$の式で表せ。
(3)$x$が実数全体を動くとき、$y$の最小値を求めよ。
(4)$a$を実数とするとき、$y=a$となるような$x$の個数を求めよ。
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#数学(高校生)#大阪教育大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
実数$x$に対して、$t=2^x+2^{-x},y=4^x-6・2^x-6・2^{-x}+4^{-x}$とおく。
次の問いに答えよ。
(1)$x$が実数全体を動くとき、$t$の最小値を求めよ。
(2)$y$を$t$の式で表せ。
(3)$x$が実数全体を動くとき、$y$の最小値を求めよ。
(4)$a$を実数とするとき、$y=a$となるような$x$の個数を求めよ。
投稿日:2021.05.11

<関連動画>

福田の数学〜慶應義塾大学2023年薬学部第1問(4)〜球面上の3点が作る三角形

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形と方程式#円と方程式#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (4)座標空間に球面S:$(x-3)^2$+$(y+2)^2$+$(z-1)^2$=36 がある。球面Sが平面y=2 と交わってできる円をCとおく。
(i)円Cの中心の座標は$\boxed{\ \ ク\ \ }$であり、半径は$\boxed{\ \ ケ\ \ }$である。
(ii)円Cと平面x=3の交点をA,Bとし、AとB以外の球面S上の任意の点をPとする。三角形PABにおいて、辺PBを4:3に内分する点をD、線分ADを5:3に内分する点をMとし、直線PMと辺ABとの交点をEとする。このとき、AEの長さは$\boxed{\ \ コ\ \ }$である。ただし、Bのz座標はAのz座標よりも大きいとする。

2023慶應義塾大学薬学部過去問
この動画を見る 

福田の数学〜浜松医科大学2023年医学部第1問〜高次方程式の解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
次の条件を満たす係数が整数の多項式 $f(x)$ を考える。
(I) $f(0)$ は4で割り切れない。
(II) 方程式$f(x) = 0 $は$ x = 1 $で重解をもつ。
(III) 方程式$f(x)=x(x-1)(x-2)$ は異なる整数解をもつ。
このとき、$f(4)$ を36で割ったときの余りを求めよ。

2023浜松医科大学医過去問
この動画を見る 

分数式の計算(数II)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{x+2}{x^2-4} - \frac{1}{x-1}$

札幌学院大学
この動画を見る 

#前橋工科大学2017#定積分_16#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{2\pi} t\sin^2t$ $dt$

出典:2017年前橋工科大学
この動画を見る 

福田の数学〜北里大学2024医学部第1問(1)〜三角関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#加法定理とその応用#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
2つの実数x,yは$x^2+y^2 \leqq 4,x \geqq 0 $を満たすとする。このとき、$3x+4y-3$の最小値は$\boxed{ ア }$、最大値は$\boxed{ イ }$である。また、$3x^2+4xy-3y^2$の最大値は$\boxed{ ウ }$である。
この動画を見る 
PAGE TOP