数学「大学入試良問集」【5−7 条件付き確率】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【5−7 条件付き確率】を宇宙一わかりやすく

問題文全文(内容文):
甲、乙2人でそれぞれ勝つ確率が下の表で示されるゲームを続けて行う。
甲乙のどちらか一方が続けて2度ゲームに勝った時は試合を終了し、2度続けて勝ったものが勝者となる。
$\begin{array}{c|c|c|c|c|c}
& 第1回目のゲーム & 甲が勝ったゲーム & 乙が勝ったゲーム \\
\hline
甲の勝つ確率 & \displaystyle \frac{2}{3} & \displaystyle \frac{2}{3} & \displaystyle \frac{1}{5} \\
\hline
乙の勝つゲーム & \displaystyle \frac{1}{3} & \displaystyle \frac{1}{3} & \displaystyle \frac{4}{5}
\end{array}$

(1)
3回以内のゲームで試合が終了する確率を求めよ。

(2)
4回のゲームで試合が終了することが分かっている。
このとき、甲が勝者となっている確率を求めよ。
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋市立大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
甲、乙2人でそれぞれ勝つ確率が下の表で示されるゲームを続けて行う。
甲乙のどちらか一方が続けて2度ゲームに勝った時は試合を終了し、2度続けて勝ったものが勝者となる。
$\begin{array}{c|c|c|c|c|c}
& 第1回目のゲーム & 甲が勝ったゲーム & 乙が勝ったゲーム \\
\hline
甲の勝つ確率 & \displaystyle \frac{2}{3} & \displaystyle \frac{2}{3} & \displaystyle \frac{1}{5} \\
\hline
乙の勝つゲーム & \displaystyle \frac{1}{3} & \displaystyle \frac{1}{3} & \displaystyle \frac{4}{5}
\end{array}$

(1)
3回以内のゲームで試合が終了する確率を求めよ。

(2)
4回のゲームで試合が終了することが分かっている。
このとき、甲が勝者となっている確率を求めよ。
投稿日:2021.04.09

<関連動画>

福田の共通テスト解答速報〜2022年共通テスト数学IA問題3。プレゼントの交換の確率の問題。

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
第3問\ 複数人がそれぞれプレゼントを一つずつ持ち寄り、交換会を開く。ただし、プレゼントは\\
全て異なるとする。\\
プレゼントの交換は次の手順で行う。\\
手順:外見が同じ袋を人数分用意し、各袋にプレゼントを一つずつ入れたうえで、\\
各参加者に袋を一つずつでたらめに配る。各参加者は配られた袋の中の\\
プレゼントを受け取る。\\
\\
交換の結果、1人でも自分の持参したプレゼントを受け取った場合は、交換をやり直す。\\
そして、全員が自分以外の人の持参したプレゼントを受け取ったところで交換会を終了する。\\
(1)2人または3人で交換会を開く場合を考える。\\
(\textrm{i})2人で交換会を開く場合、1回目の交換で交換会が終了するプレゼントの受け取り方は\\
\boxed{\ \ ア\ \ }通りある。したがって1回目の交換で交換会が終了する確率は\frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ウ\ \ }}である。\\
(\textrm{ii})3人で交換会を開く場合、1回目の交換で交換会が終了するプレゼントの受け取り方は\\
\boxed{\ \ エ\ \ }通りある。したがって1回目の交換で交換会が終了する確率は\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}である。\\
(\textrm{iii})3人で交換会を開く場合、4回以下の交換で交換会が終了する確率は\frac{\boxed{\ \ キク\ \ }}{\boxed{\ \ ケコ\ \ }}である。\\
\\
\\
(2)4人で交換会を開く場合、1回目の交換で交換会が終了する確率を\\
次の構想に基づいて求めてみよう。\\
構想:1回目の交換で交換会が終了しないプレゼントの受け取り方の総数を求める。\\
そのために、自分の持参したプレゼントを受け取る人数によって場合分けをする。\\
\\
1回目の交換で、4人のうち、ちょうど1人が自分の持参したプレゼントを受け取る場合は\\
\boxed{\ \ サ\ \ }通りあり、ちょうど2人が自分のプレゼントを受け取る場合は\boxed{\ \ シ\ \ }通りある。\\
このように考えていくと、1回目のプレゼントの受け取り方のうち、1回目の交換で交換会が\\
終了しない受け取り方の総数は\boxed{\ \ スセ\ \ }である。\\
したがって、1回目の交換で交換会が終了する確率は\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}である。\\
\\
(3)5人で交換会を開く場合、1回目の交換で交換会が終了する確率は\frac{\boxed{\ \ チツ\ \ }}{\boxed{\ \ テト\ \ }}である。\\
\\
(4)A,B,C,D,Eの5人が交換会を開く。1回目の交換でA,B,C,Dがそれぞれ自分以外\\
の人の持参したプレゼントを受け取った時、その回で交換会が終了する\\
条件付き確率は\frac{\boxed{\ \ ナニ\ \ }}{\boxed{\ \ ヌネ\ \ }}である。\\
\end{eqnarray}

2022共通テスト数学過去問
この動画を見る 

福田の数学〜東北大学2023年理系第1問〜確率の基本性質

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 赤玉4個と白玉5個の入った、中の見えない袋がある。玉はすべて、色が区別できる他には違いはないものとする。A,Bの2人が、Aから交互に、袋から玉を1個ずつ取り出すゲームを行う。ただし取り出した玉は袋の中に戻さない。Aが赤玉を取り出したらAの勝ちとし、その時点でゲームを終了する。Bが白玉を取り出したらBの勝ちとし、その時点でゲームを終了する。袋から玉がなくなったら引き分けとし、ゲームを終了する。
(1)このゲームが引き分けとなる確率を求めよ。
(2)このゲームにAが勝つ確率を求めよ。

2023東北大学理系過去問
この動画を見る 

数学「大学入試良問集」【4−2 同じものを含む順列】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#数学(高校生)#同志社大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a,a,b,b,c,d,e,f$の8文字をすべて並べて文字列をつくる。
文字$a$と文字$e$は母音字である。
(1)文字列は全部で何通りあるか。
(2)同じ文字が連続して並ばない文字列は何通りできるか。
(3)母音字が3つ連続して並ぶ文字列は何通りできるか。
(4)母音字が連続して並ばない文字列は何通りできるか。
この動画を見る 

順列 岡山県立大 続き

アイキャッチ画像
単元: #大学入試過去問(数学)#場合の数と確率
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022岡山県立大学過去問題
●n個$(n \geqq 2)$と
○3個を1列に並べる
○●〇が現れる並べ方は何通りか
*同じ色の玉は区別しない
この動画を見る 

サイコロ3個目の積が10の倍数になる確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
サイコロ3個の目の積が5と10の倍数になる確率をそれぞれ求めよ.

福島大過去問
この動画を見る 
PAGE TOP