数と式の全パターン①【高校数学ⅠA】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数と式の全パターン①【高校数学ⅠA】を宇宙一わかりやすく

問題文全文(内容文):
1.次の式の分母を有理化せよ。
$\displaystyle \frac{1}{1+\sqrt{ 2 }+\sqrt{ 3 }}$

2.次の問いに答えよ。
$x=\displaystyle \frac{\sqrt{ 5 }+\sqrt{ 3 }}{\sqrt{ 5 }-\sqrt{ 3 }},\ y=\displaystyle \frac{\sqrt{ 5 }-\sqrt{ 3 }}{\sqrt{ 5 }+\sqrt{ 3 }}$のとき、次の式の値を求めよ。
(1)$x+y$
(2)$xy$
(3)$x^2+y^2$
(4)$x^3+y^3$
(5)$x^4+y^4$
(6)$x^5+y^5$
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
1.次の式の分母を有理化せよ。
$\displaystyle \frac{1}{1+\sqrt{ 2 }+\sqrt{ 3 }}$

2.次の問いに答えよ。
$x=\displaystyle \frac{\sqrt{ 5 }+\sqrt{ 3 }}{\sqrt{ 5 }-\sqrt{ 3 }},\ y=\displaystyle \frac{\sqrt{ 5 }-\sqrt{ 3 }}{\sqrt{ 5 }+\sqrt{ 3 }}$のとき、次の式の値を求めよ。
(1)$x+y$
(2)$xy$
(3)$x^2+y^2$
(4)$x^3+y^3$
(5)$x^4+y^4$
(6)$x^5+y^5$
投稿日:2020.10.21

<関連動画>

福田の入試問題解説〜慶應義塾大学2022年医学部第1問(3)〜集合と対数不等式

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (3)関数f(x)=\log_{\frac{1}{3}}\sqrt{3x^3-2x^2}とg(x)=\log_9(3x^2-2)の定義域をそれぞれ\\
集合A,Bで表すと、A\cap B=\left\{x|xはx \gt \boxed{\ \ オ\ \ }\ を満たす実数\right\}である。\\
実数xが集合A\cap Bの要素であるとき、f(x)+g(x) \lt 0となるための条件は\\
\boxed{\ \ オ\ \ } \lt x \lt \boxed{\ \ カ\ \ }またはx \gt \boxed{\ \ キ\ \ }となることである。
\end{eqnarray}

2022慶應義塾大学医学部過去問
この動画を見る 

福田のわかった数学〜高校1年生024〜共通解の考え方

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 共通解の考え方

$\left\{\begin{array}{1}
x^2+2x+a=0\\
x^2+ax+2=0\\
\end{array}\right.$

が実数の共通解をもつように
定数$a$の値を求めよ。
この動画を見る 

高知大(医他) 二次方程式整数解 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
高知大学過去問題
a自然数、p、q素数
$ax^2-px+q=0$の2解が整数となる(a,p,q)の組をすべて求めよ
この動画を見る 

手を動かすだけの問題

アイキャッチ画像
単元: #方程式#数と式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \dfrac{1}{x}-\dfrac{1}{2y}=\dfrac{1}{2x+y}$のとき,
$\dfrac{y^2}{x^2}+\dfrac{x^2}{y^2}$の値を求めよ.

シンガポール数学オリンピック過去問
この動画を見る 

【数Ⅰ】数と式:整式の加法と減法:整理してから代入する

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$A=2x^2+xy-3z、B=-3x^2+2xy+z、C=x^2-3xy+2z$であるとき、$2(2A+B-C)-(A+4A-C)$を計算しよう。
この動画を見る 
PAGE TOP