大学入試問題#247 明治大学(2014) #極限 - 質問解決D.B.(データベース)

大学入試問題#247 明治大学(2014) #極限

問題文全文(内容文):
$\displaystyle \lim_{ h \to 0 }\displaystyle \frac{log(1+5h+6h^2)}{h}$を求めよ。

出典:2014年明治大学 入試問題
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ h \to 0 }\displaystyle \frac{log(1+5h+6h^2)}{h}$を求めよ。

出典:2014年明治大学 入試問題
投稿日:2022.07.06

<関連動画>

福田の数学〜東京理科大学2024創域理工学部第2問〜放物線の接線と極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$m$を正の実数とし、関数$f(x)$を$f(x)=-mx^2+1$と定める。座標平面上の曲線$y=f(x)$を$C$とおき、負の実数$a$に対して点$\textrm{A}(a,f(a))$における曲線$C$の接線を$l_1$とおく。直線$l_1$と$y$軸との交点を$\textrm{P}$とし、点$\textrm{P}$を通り$l_1$に垂直な直線を$l_2$とおき、$l_2$と$x$軸の交点を$\textrm{Q}$とする。
(1) 点$\textrm{P}$の座標を$a$と$m$を用いて表せ。
(2) 点$\textrm{Q}$の座標を$a$と$m$を用いて表せ。

以下、直線$l_2$が曲線$C$の接線となるときを考える。
(3) $a$を$m$を用いて表せ。
(4) 線分$\textrm{AQ}$の長さは$m$を用いて表される。これを$L(m)$とおく。
(a) $\displaystyle \lim_{m \rightarrow \infty}L(m)$を求めよ。
(b) $\displaystyle \lim_{m \rightarrow 0}mL(m)$を求めよ。
この動画を見る 

福田の数学〜九州大学2024年理系第5問〜定積分で定義された数列の極限

アイキャッチ画像
単元: #関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 自然数$m$, $n$に対して
$I(m,n)$=$\displaystyle\int_1^ex^me^x(\log x)^ndx$
とする。以下の問いに答えよ。
(1)$I(m+1,n+1)$を$I(m,n+1)$, $I(m,n)$, $m$, $n$を用いて表せ。
(2)すべての自然数$m$に対して、$\displaystyle\lim_{n \to \infty}I(m,n)$=0 が成り立つことを示せ。
この動画を見る 

福田の数学〜筑波大学2023年理系第5問〜関数の増減と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#微分法#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ $f(x)$=$x^{-2}e^x$ ($x$>0)とし、曲線$y$=$f(x)$をCとする。また$h$を正の実数とする。さらに、正の実数$t$に対して、曲線C、2直線$x$=$t$, $x$=$t$+$h$、および$x$軸で囲まれた図形の面積を$g(t)$とする。
(1)$g'(t)$を求めよ。
(2)$g(t)$を最小にする$t$がただ1つ存在することを示し、その$t$を$h$を用いて表せ。
(3)(2)で得られた$t$を$t(h)$とする。このとき極限値$\displaystyle\lim_{h \to +0}t(h)$を求めよ。
この動画を見る 

大学入試問題#621「これは、ぜひ挑戦してほしい」 防衛医科大学(2016) #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#防衛医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to \infty } \{\displaystyle \frac{2x-2}{2x-1}-\displaystyle \frac{2}{(2x-1)^2}\}^{3x}$

出典:2016年防衛医科大学 入試問題
この動画を見る 

福田の数学〜北海道大学2023年理系第1問〜複素数平面上の図形の列

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#関数と極限#複素数平面#図形への応用#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 複素数平面上における図形$C_1$, $C_2$, ...,$C_n$, ...は次の条件(A)と(B)を満たすとする。ただし、$i$は虚数単位とする。
(A)$C_1$は原点Oを中心とする半径2の円である。
(B)自然数nに対して、zが$C_n$上を動くとき2w=z+1+$i$で定まるwの描く図形が$C_{n+1}$である。
(1)すべての自然数nに対して、$C_n$は円であることを示し、その中心を表す複素数$\alpha_n$と半径$r_n$を求めよ。
(2)$C_n$上の点とOとの距離の最小値を$d_n$とする。このとき、$d_n$を求めよ。
また、$\displaystyle\lim_{n \to \infty}d_n$を求めよ。

2023北海道大学理系過去問
この動画を見る 
PAGE TOP