問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}}\displaystyle \frac{\cos\theta\sin\theta}{\cos^4\theta+\sin^4\theta}d\theta$
$t=\tan^2\theta$で変数変換
出典:埼玉大学 入試問題
$\displaystyle \int_{0}^{\frac{\pi}{4}}\displaystyle \frac{\cos\theta\sin\theta}{\cos^4\theta+\sin^4\theta}d\theta$
$t=\tan^2\theta$で変数変換
出典:埼玉大学 入試問題
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}}\displaystyle \frac{\cos\theta\sin\theta}{\cos^4\theta+\sin^4\theta}d\theta$
$t=\tan^2\theta$で変数変換
出典:埼玉大学 入試問題
$\displaystyle \int_{0}^{\frac{\pi}{4}}\displaystyle \frac{\cos\theta\sin\theta}{\cos^4\theta+\sin^4\theta}d\theta$
$t=\tan^2\theta$で変数変換
出典:埼玉大学 入試問題
投稿日:2022.06.11