大学入試問題#215 宮崎大学(2011) 定積分 - 質問解決D.B.(データベース)

大学入試問題#215 宮崎大学(2011) 定積分

問題文全文(内容文):
$\displaystyle \int_{2}^{3}\displaystyle \frac{x^2}{x(x+1)}$を計算せよ。

出典:2011年宮崎大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{2}^{3}\displaystyle \frac{x^2}{x(x+1)}$を計算せよ。

出典:2011年宮崎大学 入試問題
投稿日:2022.06.01

<関連動画>

#日本工業大学(2021) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{2}^{4} log_2\ x\ dx$

出典:2021年日本工業大学
この動画を見る 

福田の数学〜東京工業大学2022年理系第5問〜定積分と不等式と区分求積

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
aは$0 \lt a \leqq \frac{\pi}{4}$を満たす実数とし、
$f(x)=\frac{4}{3}\sin(\frac{\pi}{4}+ax)\cos(\frac{\pi}{4}-ax)$
とする。このとき、次の問いに答えよ。
(1)次の等式(*)を満たすaがただ1つ存在することを示せ。
(*)  $\int_0^1f(x)dx=1$
(2)$0 \leqq b \lt c \leqq 1$を満たす実数b,cについて、不等式
$f(b)(c-b) \leqq \int_b^cf(x)dx \leqq f(c)(c-b)$
が成り立つことを示せ。
(3)次の試行を考える。\\
[試行]n個の数$1,2,\ldots\ldots,n$を出目とする、あるルーレットをk回まわす。
この試行において、各$i=1,2,\ldots\ldots,n$についてiが出た回数を$S_{n,k,i}$とし、

(**)$\lim_{k \to \infty}\frac{S_{n,k,i}}{k}=\int_{\frac{i-1}{n}}^{\frac{i}{n}}f(x)dx$
が成り立つとする。このとき、(1)の等式(*)が成り立つことを示せ。
(4)(3)の[試行]において出た数の平均値を$A_{n,k}$とし、$A_n=\lim_{k \to \infty}A_{n,k}$とする。
(**)が成り立つとき、極限$\lim_{n \to \infty}\frac{A_n}{n}$をaを用いて表せ。

2022東京工業大学理系過去問
この動画を見る 

大学入試問題#452「解き方は色々とあるかと思います」 横浜国立大学(2002) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#対数関数#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{a} log(a^2+x^2) dx$

出典:2002年横浜国立大学 入試問題
この動画を見る 

福田のおもしろ数学229〜置換積分の計算

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle \int^3_2\dfrac{1}{1+x^2}dx$の値を求めよ。
この動画を見る 

大学入試問題#405「ロープをうまく通す」 東京医科大学 (1) 2022 #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \displaystyle \frac{dx}{\cos^2x\sqrt{ 9+7\tan|x| }}$

出典:2022年東京医科大学 入試問題
この動画を見る 
PAGE TOP